Citation: | Man Xu, Ruyun Ma, Ting Wang. NON-SPURIOUS SOLUTIONS OF DISCRETE MIXED BOUNDARY VALUE PROBLEM WITH SINGULAR ϕ-LAPLACIAN[J]. Journal of Applied Analysis & Computation, 2023, 13(4): 2250-2266. doi: 10.11948/20220455 |
In this paper, we consider the differential and difference problems associated with the discrete approximation of classical radial solutions of the nonlinear Dirichlet problem for the prescribed mean curvature equation in Minkowski space
$ \begin{align} &-\mathrm{div}\Big(\frac{\text{grad} v}{\sqrt{1-|\text{grad} v|^2}}\Big) = f\Big(|x|,v,\frac{dv}{dr}\Big)\ \ \ \text{in}\ \mathcal{B},\\ &v = 0 \ \ \text{on}\ \partial \mathcal{B}, \end{align} $
where $ \mathcal{B} $ is the unit ball in $ \mathbb{R}^{N} $, div denotes the divergence operator of $ \mathbb{R}^{N} $, $ \text{grad}v $ is the gradient of $ v $, $ |\cdot| $ denotes the Euclidean norm in $ \mathbb{R}^{N} $, $ \frac{dv}{dr} $ stands for the radial derivative of $ v $ and $ f $ is a continuous function. By using lower and upper solutions, we prove the existence of solutions of the corresponding differential and difference problems, and based on the ideas of lower and upper $ \mu $-solutions show the solutions of the discrete problem can converge to the solutions of the continuous problem.
[1] | R. P. Agarwal, Difference equations and inequalities, in: Theory, Methods, and Applications, second ed., in: Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 2000. |
[2] | L. J. Alías and B. Palmer, On the Gaussian curvature of maximal surfaces and the Calabi-Bernstein theorem, Bull. London Math. Soc., 2001, 33,454-458. doi: 10.1017/S0024609301008220 |
[3] | U. M. Ascher, R. M. M. R. Mattheij and D. Russell, Numerical solutions of boundary value problems for ordinary differential equations, SIAM Philadelphia PA, 1995. |
[4] | R. Bartnik and L. Simon, Spacelike hypersurfaces with prescribed boundary values and mean curvature, Comm. Math. Phys., 1982-1983, 87,131-152. |
[5] | C. Bereanu, P. Jebelean and J. Mawhin, Radial solutions for some nonlinear problems involving mean curvature operators in Euclidean and Minkowski spaces, Proc. Amer. Math. Soc., 2009,137,171-178. |
[6] | C. Bereanu, P. Jebelean and P. J. Torres, Positive radial solutions for Dirichlet problems with mean curvature operators in Minkowski space, J. Funct. Anal., 2013,264,270-287. doi: 10.1016/j.jfa.2012.10.010 |
[7] | C. Bereanu, P. Jebelean and P. J. Torres, Multiple positive radial solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space, J. Funct. Anal., 2013,265,644-659. doi: 10.1016/j.jfa.2013.04.006 |
[8] | C. Bereanu and J. Mawhin, Existence and multiplicity results for some nonlinear problems with singular ϕ-Laplacian, J. Differential Equations, 2007,243,536-557. doi: 10.1016/j.jde.2007.05.014 |
[9] | C. Bereanu and J. Mawhin, Boundary value problems for second-order nonlinear difference equations with discrete ϕ-Laplacian and singular ϕ, J. Difference Equ. Appl., 2008, 14(10-11), 1099-1118. doi: 10.1080/10236190802332290 |
[10] | M. F. Bidaut-Veron and A. Ratto, Spacelike graphs with prescribed mean curvature, Differential Integral Equations, 1997, 10(5), 1003-1017. |
[11] | A. Cabada, P. Habets and R. L. Pouso, Lower and upper solutions for the periodic problem associated with a ϕ-Laplacian equation. In: International Conference on Differential Equations, World Scientific Publishing, River Edge, 2000. |
[12] | A. Cabada and R. L. Pouso, Extremal solutions of strongly nonlinear discontinuous second-order equations with nonlinear functional boundary conditions, Nonlinear Anal., 2000, 42(8), 1377-1396. doi: 10.1016/S0362-546X(99)00158-3 |
[13] | E. Calabi, Examples of Bernstein problems for some nonlinear equations, Proc. Sympos. Pure Math., 1970, 15,223-230. |
[14] | T. Chen, R. Ma and Y. Liang, Multiple positive solutions of second-order nonlinear difference equations with discrete singular ϕ-Laplacian, J. Difference Equ. Appl., 2019, 25(1), 38-55. doi: 10.1080/10236198.2018.1554064 |
[15] | S. Cheng and S. T. Yau, Maximal spacelike hypersurfaces in the Lorentz-Minkowski spaces, Ann. of Math., 1976,104,407-419. doi: 10.2307/1970963 |
[16] | I. Coelho, C. Corsato, F. Obersnel and P. Omari, Positive solutions of the Dirichlet problem for the one-dimensional Minkowski-curvature equation, Adv. Nonlinear Stud., 2012, 12(3), 621-638. doi: 10.1515/ans-2012-0310 |
[17] | C. Corsato, F. Obersnel, P. Omari and S. Rivetti, Positive solutions of the Dirichlet problem for the prescribed mean curvature equation in Minkowski space, J. Math. Anal. Appl., 2013,405,227-239. doi: 10.1016/j.jmaa.2013.04.003 |
[18] | G. Dai, Bifurcation and nonnegative solutions for problems with mean curvature operator on general domain, Indiana Univ. Math. J., 2018, 67(6), 2103-2121. doi: 10.1512/iumj.2018.67.7546 |
[19] | G. Dai, Global structure of one-sign solutions for problem with mean curvature operator, Nonlinearity, 2018, 31(11), 5309-5328. doi: 10.1088/1361-6544/aadf43 |
[20] | G. Dai, Bifurcation and positive solutions for problem with mean curvature operator in Minkowski space, Calc. Var. Partial Differential Equations, 2016, 55, 1-17. doi: 10.1007/s00526-015-0942-y |
[21] | R. Gaines, Difference equations associated with boundary value problems for second order nonlinear ordinary differential equations, SIAM J. Numer. Anal., 1974, 11,411-434. doi: 10.1137/0711035 |
[22] | D. Gurban and P. Jebelean, Positive radial solutions for multiparameter Dirichlet systems with mean curvature operator in Minkowski space and Lane-Emden type nonlinearities, J. Differential Equations, 2019,266(9), 5377-5396. doi: 10.1016/j.jde.2018.10.030 |
[23] | D. Gurban, P. Jebelean and C. Serban, Non-potential and non-radial Dirichlet systems with mean curvature operator in Minkowski space, Discrete Contin. Dyn. Syst., 2020, 40,133-151. doi: 10.3934/dcds.2020006 |
[24] | S. Huang, Classification and evolution of bifurcation curves for the one dimensional Minkowski curvature problem and its applications, J. Differential Equations, 2018,264, 5977-6011. doi: 10.1016/j.jde.2018.01.021 |
[25] | S. Huang, Bifurcation diagrams of positive solutions for one-dimensional Minkowski-curvature problem and its applications, Discrete Contin. Dyn. Syst., 2019, 39(6), 3443-3462. doi: 10.3934/dcds.2019142 |
[26] | S. Huang and M. Huang, Bifurcation curves of positive solutions for the Minkowski-curvature problem with cubic nonlinearity, Electron, J. Qual. Theory Differ. Equ., 2021, 41, 29. |
[27] | P. Jebelean and C. Popa, Numerical solutions to singular ϕ-Laplacian with Dirichlet boundary conditions, Numer. Algorithms, 2014, 67,305-318. doi: 10.1007/s11075-013-9792-x |
[28] | P. Jebelean, C. Popa and C. Serban, Numerical extremal solutions for a mixed problem with singular ϕ-Laplacian, NoDEA Nonlinear Differential Equations Appl., 2014, 21,289-304. doi: 10.1007/s00030-013-0247-9 |
[29] | Y. H. Lee, I. Sim and R. Yang, Bifurcation and Calabi-Bernstein type asymptotic property of solutions for the one-dimensional Minkowski-curvature equation, J. Math. Anal. Appl., 2022,507(1), 16. |
[30] | Y. Li, Positive radial solutions for elliptic equations with nonlinear gradient terms on the unit ball, Mediterr. J. Math., 2020, 17, 1-13. doi: 10.1007/s00009-019-1430-y |
[31] | R. Ma, H. Gao and Y. Lu, Global structure of radial positive solutions for a prescribed mean curvature problem in a ball, J. Funct. Anal., 2016,270, 2430-2455. doi: 10.1016/j.jfa.2016.01.020 |
[32] | R. Ma, L. Wei and Z. Chen, Evolution of bifurcation curves for one-dimensional Minkowski-curvature problem, Appl. Math. Lett., 2020,103, 1-8. |
[33] | R. Ma and M. Xu, Multiple positive solutions of the Dirichlet problem for the prescribed mean curvature equation in Minkowski space, Discrete Contin. Dyn. Syst. Ser. B, 2019, 24, 2701-2718. |
[34] | R. Ma and M. Xu, Existence of infinitely many radial nodal solutions for a Dirichlet problem involving mean curvature operator in Minkowski space, Electron. J. Qual. Theory Differ. Equ., 2020, 27, 14. |
[35] | R. Ma, M. Xu and Z. He, Nonconstant positive radial solutions for Neumann problem involving the mean extrinsic curvature operator, J. Math. Anal. Appl., 2020,484(2), 13. |
[36] | J. Myjak, Boundary value problems for nonlinear differential and difference equations of the second order, Zeszyty Nauk. Uniw. Jagiello. Prace Mat., 1971, 15,113-123. |
[37] | I. Rachunkova and C. C. Tisdell, Existence of non-spurious solutions to discrete Dirichlet problems with lower and upper solutions, Nonlinear Anal., 2007, 67, 1236-1245. doi: 10.1016/j.na.2006.07.010 |
[38] | H. B. Thompson and C. Tisdell, Boundary value problems for systems of difference equations associated with systems of second-order ordinary differential equations, Appl. Math. Lett., 2002, 15,761-766. doi: 10.1016/S0893-9659(02)00039-3 |
[39] | A. E. Treibergs, Entire spacelike hypersurfaces of constant mean curvature in Minkowski space, Invent. Math., 1982, 66, 39-56. doi: 10.1007/BF01404755 |
[40] | R. Yang, Y. H. Lee and I. Sim, Bifurcation of nodal radial solutions for a prescribed mean curvature problem on an exterior domain, J. Differential Equations, 2020,268, 4464-4490. doi: 10.1016/j.jde.2019.10.035 |
[41] |
R. Yang, I. Sim and Y. H. Lee, $ \frac{\pi}{4}$-tangentiality of solutions for one-dimensional Minkowski-curvature problems, Adv. Nonlinear Anal., 2020, 9(1), 1463-1479. doi: 10.1515/anona-2020-0061
CrossRef $\frac{\pi}{4} $-tangentiality of solutions for one-dimensional Minkowski-curvature problems" target="_blank">Google Scholar |
[42] | X. Zhang, Lower and upper solutions for delay evolution equations with nonlocal and impulsive conditions, Electron. J. Differential Equations, 2022, 31, 14. |
[43] | X. Zhang and M. Feng, Bifurcation diagrams and exact multiplicity of positive solutions of one-dimensional prescribed mean curvature equation in Minkowski space, Commun. Contemp. Math., 2019, 21, 1-17. |