2023 Volume 13 Issue 4
Article Contents

Man Xu, Ruyun Ma, Ting Wang. NON-SPURIOUS SOLUTIONS OF DISCRETE MIXED BOUNDARY VALUE PROBLEM WITH SINGULAR ϕ-LAPLACIAN[J]. Journal of Applied Analysis & Computation, 2023, 13(4): 2250-2266. doi: 10.11948/20220455
Citation: Man Xu, Ruyun Ma, Ting Wang. NON-SPURIOUS SOLUTIONS OF DISCRETE MIXED BOUNDARY VALUE PROBLEM WITH SINGULAR ϕ-LAPLACIAN[J]. Journal of Applied Analysis & Computation, 2023, 13(4): 2250-2266. doi: 10.11948/20220455

NON-SPURIOUS SOLUTIONS OF DISCRETE MIXED BOUNDARY VALUE PROBLEM WITH SINGULAR ϕ-LAPLACIAN

  • Author Bio: Email: ryma@xidian.edu.cn(R. Ma); Email: 17874158737@163.com(T. Wang)
  • Corresponding author: Email: xmannwnu@126.com(M. Xu) 
  • Fund Project: The authors were supported by the NSFC (No. 11671322) and by the grant 20JR10RA100, 21JR1RA230, 2021A-006 and NWNU-LKQN2021-17
  • In this paper, we consider the differential and difference problems associated with the discrete approximation of classical radial solutions of the nonlinear Dirichlet problem for the prescribed mean curvature equation in Minkowski space

    $ \begin{align} &-\mathrm{div}\Big(\frac{\text{grad} v}{\sqrt{1-|\text{grad} v|^2}}\Big) = f\Big(|x|,v,\frac{dv}{dr}\Big)\ \ \ \text{in}\ \mathcal{B},\\ &v = 0 \ \ \text{on}\ \partial \mathcal{B}, \end{align} $

    where $ \mathcal{B} $ is the unit ball in $ \mathbb{R}^{N} $, div denotes the divergence operator of $ \mathbb{R}^{N} $, $ \text{grad}v $ is the gradient of $ v $, $ |\cdot| $ denotes the Euclidean norm in $ \mathbb{R}^{N} $, $ \frac{dv}{dr} $ stands for the radial derivative of $ v $ and $ f $ is a continuous function. By using lower and upper solutions, we prove the existence of solutions of the corresponding differential and difference problems, and based on the ideas of lower and upper $ \mu $-solutions show the solutions of the discrete problem can converge to the solutions of the continuous problem.

    MSC: 34A45, 34B16, 35A01, 39A27
  • 加载中
  • [1] R. P. Agarwal, Difference equations and inequalities, in: Theory, Methods, and Applications, second ed., in: Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 2000.

    Google Scholar

    [2] L. J. Alías and B. Palmer, On the Gaussian curvature of maximal surfaces and the Calabi-Bernstein theorem, Bull. London Math. Soc., 2001, 33,454-458. doi: 10.1017/S0024609301008220

    CrossRef Google Scholar

    [3] U. M. Ascher, R. M. M. R. Mattheij and D. Russell, Numerical solutions of boundary value problems for ordinary differential equations, SIAM Philadelphia PA, 1995.

    Google Scholar

    [4] R. Bartnik and L. Simon, Spacelike hypersurfaces with prescribed boundary values and mean curvature, Comm. Math. Phys., 1982-1983, 87,131-152.

    Google Scholar

    [5] C. Bereanu, P. Jebelean and J. Mawhin, Radial solutions for some nonlinear problems involving mean curvature operators in Euclidean and Minkowski spaces, Proc. Amer. Math. Soc., 2009,137,171-178.

    Google Scholar

    [6] C. Bereanu, P. Jebelean and P. J. Torres, Positive radial solutions for Dirichlet problems with mean curvature operators in Minkowski space, J. Funct. Anal., 2013,264,270-287. doi: 10.1016/j.jfa.2012.10.010

    CrossRef Google Scholar

    [7] C. Bereanu, P. Jebelean and P. J. Torres, Multiple positive radial solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space, J. Funct. Anal., 2013,265,644-659. doi: 10.1016/j.jfa.2013.04.006

    CrossRef Google Scholar

    [8] C. Bereanu and J. Mawhin, Existence and multiplicity results for some nonlinear problems with singular ϕ-Laplacian, J. Differential Equations, 2007,243,536-557. doi: 10.1016/j.jde.2007.05.014

    CrossRef Google Scholar

    [9] C. Bereanu and J. Mawhin, Boundary value problems for second-order nonlinear difference equations with discrete ϕ-Laplacian and singular ϕ, J. Difference Equ. Appl., 2008, 14(10-11), 1099-1118. doi: 10.1080/10236190802332290

    CrossRef Google Scholar

    [10] M. F. Bidaut-Veron and A. Ratto, Spacelike graphs with prescribed mean curvature, Differential Integral Equations, 1997, 10(5), 1003-1017.

    Google Scholar

    [11] A. Cabada, P. Habets and R. L. Pouso, Lower and upper solutions for the periodic problem associated with a ϕ-Laplacian equation. In: International Conference on Differential Equations, World Scientific Publishing, River Edge, 2000.

    Google Scholar

    [12] A. Cabada and R. L. Pouso, Extremal solutions of strongly nonlinear discontinuous second-order equations with nonlinear functional boundary conditions, Nonlinear Anal., 2000, 42(8), 1377-1396. doi: 10.1016/S0362-546X(99)00158-3

    CrossRef Google Scholar

    [13] E. Calabi, Examples of Bernstein problems for some nonlinear equations, Proc. Sympos. Pure Math., 1970, 15,223-230.

    Google Scholar

    [14] T. Chen, R. Ma and Y. Liang, Multiple positive solutions of second-order nonlinear difference equations with discrete singular ϕ-Laplacian, J. Difference Equ. Appl., 2019, 25(1), 38-55. doi: 10.1080/10236198.2018.1554064

    CrossRef Google Scholar

    [15] S. Cheng and S. T. Yau, Maximal spacelike hypersurfaces in the Lorentz-Minkowski spaces, Ann. of Math., 1976,104,407-419. doi: 10.2307/1970963

    CrossRef Google Scholar

    [16] I. Coelho, C. Corsato, F. Obersnel and P. Omari, Positive solutions of the Dirichlet problem for the one-dimensional Minkowski-curvature equation, Adv. Nonlinear Stud., 2012, 12(3), 621-638. doi: 10.1515/ans-2012-0310

    CrossRef Google Scholar

    [17] C. Corsato, F. Obersnel, P. Omari and S. Rivetti, Positive solutions of the Dirichlet problem for the prescribed mean curvature equation in Minkowski space, J. Math. Anal. Appl., 2013,405,227-239. doi: 10.1016/j.jmaa.2013.04.003

    CrossRef Google Scholar

    [18] G. Dai, Bifurcation and nonnegative solutions for problems with mean curvature operator on general domain, Indiana Univ. Math. J., 2018, 67(6), 2103-2121. doi: 10.1512/iumj.2018.67.7546

    CrossRef Google Scholar

    [19] G. Dai, Global structure of one-sign solutions for problem with mean curvature operator, Nonlinearity, 2018, 31(11), 5309-5328. doi: 10.1088/1361-6544/aadf43

    CrossRef Google Scholar

    [20] G. Dai, Bifurcation and positive solutions for problem with mean curvature operator in Minkowski space, Calc. Var. Partial Differential Equations, 2016, 55, 1-17. doi: 10.1007/s00526-015-0942-y

    CrossRef Google Scholar

    [21] R. Gaines, Difference equations associated with boundary value problems for second order nonlinear ordinary differential equations, SIAM J. Numer. Anal., 1974, 11,411-434. doi: 10.1137/0711035

    CrossRef Google Scholar

    [22] D. Gurban and P. Jebelean, Positive radial solutions for multiparameter Dirichlet systems with mean curvature operator in Minkowski space and Lane-Emden type nonlinearities, J. Differential Equations, 2019,266(9), 5377-5396. doi: 10.1016/j.jde.2018.10.030

    CrossRef Google Scholar

    [23] D. Gurban, P. Jebelean and C. Serban, Non-potential and non-radial Dirichlet systems with mean curvature operator in Minkowski space, Discrete Contin. Dyn. Syst., 2020, 40,133-151. doi: 10.3934/dcds.2020006

    CrossRef Google Scholar

    [24] S. Huang, Classification and evolution of bifurcation curves for the one dimensional Minkowski curvature problem and its applications, J. Differential Equations, 2018,264, 5977-6011. doi: 10.1016/j.jde.2018.01.021

    CrossRef Google Scholar

    [25] S. Huang, Bifurcation diagrams of positive solutions for one-dimensional Minkowski-curvature problem and its applications, Discrete Contin. Dyn. Syst., 2019, 39(6), 3443-3462. doi: 10.3934/dcds.2019142

    CrossRef Google Scholar

    [26] S. Huang and M. Huang, Bifurcation curves of positive solutions for the Minkowski-curvature problem with cubic nonlinearity, Electron, J. Qual. Theory Differ. Equ., 2021, 41, 29.

    Google Scholar

    [27] P. Jebelean and C. Popa, Numerical solutions to singular ϕ-Laplacian with Dirichlet boundary conditions, Numer. Algorithms, 2014, 67,305-318. doi: 10.1007/s11075-013-9792-x

    CrossRef Google Scholar

    [28] P. Jebelean, C. Popa and C. Serban, Numerical extremal solutions for a mixed problem with singular ϕ-Laplacian, NoDEA Nonlinear Differential Equations Appl., 2014, 21,289-304. doi: 10.1007/s00030-013-0247-9

    CrossRef Google Scholar

    [29] Y. H. Lee, I. Sim and R. Yang, Bifurcation and Calabi-Bernstein type asymptotic property of solutions for the one-dimensional Minkowski-curvature equation, J. Math. Anal. Appl., 2022,507(1), 16.

    Google Scholar

    [30] Y. Li, Positive radial solutions for elliptic equations with nonlinear gradient terms on the unit ball, Mediterr. J. Math., 2020, 17, 1-13. doi: 10.1007/s00009-019-1430-y

    CrossRef Google Scholar

    [31] R. Ma, H. Gao and Y. Lu, Global structure of radial positive solutions for a prescribed mean curvature problem in a ball, J. Funct. Anal., 2016,270, 2430-2455. doi: 10.1016/j.jfa.2016.01.020

    CrossRef Google Scholar

    [32] R. Ma, L. Wei and Z. Chen, Evolution of bifurcation curves for one-dimensional Minkowski-curvature problem, Appl. Math. Lett., 2020,103, 1-8.

    Google Scholar

    [33] R. Ma and M. Xu, Multiple positive solutions of the Dirichlet problem for the prescribed mean curvature equation in Minkowski space, Discrete Contin. Dyn. Syst. Ser. B, 2019, 24, 2701-2718.

    Google Scholar

    [34] R. Ma and M. Xu, Existence of infinitely many radial nodal solutions for a Dirichlet problem involving mean curvature operator in Minkowski space, Electron. J. Qual. Theory Differ. Equ., 2020, 27, 14.

    Google Scholar

    [35] R. Ma, M. Xu and Z. He, Nonconstant positive radial solutions for Neumann problem involving the mean extrinsic curvature operator, J. Math. Anal. Appl., 2020,484(2), 13.

    Google Scholar

    [36] J. Myjak, Boundary value problems for nonlinear differential and difference equations of the second order, Zeszyty Nauk. Uniw. Jagiello. Prace Mat., 1971, 15,113-123.

    Google Scholar

    [37] I. Rachunkova and C. C. Tisdell, Existence of non-spurious solutions to discrete Dirichlet problems with lower and upper solutions, Nonlinear Anal., 2007, 67, 1236-1245. doi: 10.1016/j.na.2006.07.010

    CrossRef Google Scholar

    [38] H. B. Thompson and C. Tisdell, Boundary value problems for systems of difference equations associated with systems of second-order ordinary differential equations, Appl. Math. Lett., 2002, 15,761-766. doi: 10.1016/S0893-9659(02)00039-3

    CrossRef Google Scholar

    [39] A. E. Treibergs, Entire spacelike hypersurfaces of constant mean curvature in Minkowski space, Invent. Math., 1982, 66, 39-56. doi: 10.1007/BF01404755

    CrossRef Google Scholar

    [40] R. Yang, Y. H. Lee and I. Sim, Bifurcation of nodal radial solutions for a prescribed mean curvature problem on an exterior domain, J. Differential Equations, 2020,268, 4464-4490. doi: 10.1016/j.jde.2019.10.035

    CrossRef Google Scholar

    [41] R. Yang, I. Sim and Y. H. Lee, $ \frac{\pi}{4}$-tangentiality of solutions for one-dimensional Minkowski-curvature problems, Adv. Nonlinear Anal., 2020, 9(1), 1463-1479. doi: 10.1515/anona-2020-0061

    CrossRef $\frac{\pi}{4} $-tangentiality of solutions for one-dimensional Minkowski-curvature problems" target="_blank">Google Scholar

    [42] X. Zhang, Lower and upper solutions for delay evolution equations with nonlocal and impulsive conditions, Electron. J. Differential Equations, 2022, 31, 14.

    Google Scholar

    [43] X. Zhang and M. Feng, Bifurcation diagrams and exact multiplicity of positive solutions of one-dimensional prescribed mean curvature equation in Minkowski space, Commun. Contemp. Math., 2019, 21, 1-17.

    Google Scholar

Article Metrics

Article views(1768) PDF downloads(317) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint