Citation: | Iz-iddine EL-Fassi, El-sayed El-hady, Wutiphol Sintunavarat. HYPERSTABILITY RESULTS FOR GENERALIZED QUADRATIC FUNCTIONAL EQUATIONS IN $(2,\alpha)$-BANACH SPACES[J]. Journal of Applied Analysis & Computation, 2023, 13(5): 2596-2612. doi: 10.11948/20220462 |
In this article, we utilize a special version of some recent fixed point theorem to investigate the hyperstability of the following generalized quadratic functional equation with $F$ is the unknown function from a special subset $X$ of a (2, $\beta$)-normed space over the field $\mathbb{F}$ into a (2, $\alpha$)-Banach space over the field $\mathbb{K}$:
$F(ax_1+bx_2)+F(cx_1+dx_2)=rF(x_1)+sF(x_2)$
for all $x_1, x_2 \in X$, where $a, b, c, d\in \mathbb{F}$ and $r, s\in \mathbb{K}$. In this way, we generalize several earlier outcomes.
[1] | L. Aiemsomboon and W. Sintunavarat, On generalized hyperstability of a general linear equation, Acta Math. Hungar., 2016, 149(2), 413–422. doi: 10.1007/s10474-016-0621-2 |
[2] | T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 1950, 2(1–2), 64–66. |
[3] | A. Bahyrycz and M. Piszczek, Hyperstability of the Jensen functional equation, Acta Math. Hungar., 2014, 142(2), 353–365. doi: 10.1007/s10474-013-0347-3 |
[4] | R. Badora, J. Brzdęk and K. Ciepliński, Applications of Banach limit in Ulam stability, Symmetry, 2021, 13(5), 1–18. |
[5] | A. Bahyrycz, J. Brzdęk, E. El-hady and Z. Leśniak, On Ulam stability of functional equations in $2$-normed spaces-a survey, Symmetry, 2021, 13, 1–19. |
[6] | J. Brzdęk and K. Ciepliński, On a fixed point theorem in 2-Banach spaces and some of its applications, Acta Math. Sci., 2018, 38(2), 377–390. doi: 10.1016/S0252-9602(18)30755-0 |
[7] | J. Brzdęk, Hyperstability of the Cauchy equation on restricted domains, Acta Math. Hungar., 2013, 141(1–2), 58–67. doi: 10.1007/s10474-013-0302-3 |
[8] | J. Brzdęk, Remarks on hyperstability of the Cauchy functional equation, Aequationes Math., 2013, 86(3), 255–267. doi: 10.1007/s00010-012-0168-4 |
[9] | J. Brzdęk, J. Chudziak and Z. Pales, A fixed point approach to stability of functional equations, Nonlinear Anal., 2011, 74, 6728–6732. doi: 10.1016/j.na.2011.06.052 |
[10] | J. Brzdęk, A hyperstability result for the Cauchy equation, Bull. Austral. Math. Soc., 2014, 89(1), 33–40. doi: 10.1017/S0004972713000683 |
[11] | J. Brzdęk and K. Ciepliński, Hyperstability and superstability, Abstr. Appl. Anal., 2013, 2013, 1–13. |
[12] | J. Brzdęk, E. Jabłońska, M. S. Moslehian and P. Pacho, On stability of a functional equation of quadratic type, Acta Math. Hungar., 2016, 149, 160–169. doi: 10.1007/s10474-016-0602-5 |
[13] | D. G. Bourgin, Approximately isometric and multiplicative transformations on continuous function rings, Duke Math. J., 1949, 16, 385–397. |
[14] | S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, Singapore, 2002. |
[15] | N. V. Dung and V. T. Le Hang, The generalized hyperstability of general linear equations in quasi-Banach spaces, J. Math. Anal. Appl., 2018, 462(1), 131–147. doi: 10.1016/j.jmaa.2018.01.070 |
[16] | E. S. El-hady and J. Brzdęk, Banach Limit and Ulam Stability of Nonhomogeneous Cauchy Equation, Mathematics, 2022, 10(10), 1–15. |
[17] |
E. S. El-hady and J. Brzdęk, On Ulam stability of functional equations in $2$-normed spaces-a survey Ⅱ, Symmetry, 2022, 14, 1–28.
$2$-normed spaces-a survey Ⅱ" target="_blank">Google Scholar |
[18] |
Iz. EL-Fassi, On the general solution and hyperstability of the general radical quintic functional equation in quasi-$\beta$-Banach spaces, J. Math. Anal. Appl., 2018, 466, 733–748. doi: 10.1016/j.jmaa.2018.06.024
CrossRef $\beta$-Banach spaces" target="_blank">Google Scholar |
[19] | Iz. EL-Fassi, S. Kabbaj and A. Ahmed Charifi, Hyperstability of Cauchy-Jensen functional equations, Indag. Math., 2016, 27, 855–867. doi: 10.1016/j.indag.2016.04.001 |
[20] | Z. Gajda, On stability of additive mappings, Int. J. Math. Math. Sci., 1991, 14, 431–434. doi: 10.1155/S016117129100056X |
[21] | E. Gselmann, Hyperstability of a functional equation, Acta Math. Hungar., 2009, 124, 179–188. doi: 10.1007/s10474-009-8174-2 |
[22] | D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci., 1941, 27, 222–224. doi: 10.1073/pnas.27.4.222 |
[23] | P. Kannappan, Functional Equations and Inequalities with Applications, Springer, Berlin, 2009. |
[24] | A. Khrennikov, Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models, Kluwer Academic Publishers, Dordrecht, 1997. |
[25] | G. Maksa and Z. Páles, Hyperstability of a class of linear functional equations, Acta Math. Acad. Paedagog. Nyí regyháziensis, 2021, 17(2), 107–112. |
[26] | Z. Moszner, Stability has many names, Aequationes Math., 2016, 90(5), 983–999. doi: 10.1007/s00010-016-0429-8 |
[27] |
W. G. Park, Approximate additive mappings in $2$-Banach spaces and related topics, J. Math. Anal. Appl., 2011, 376(1), 193–202. doi: 10.1016/j.jmaa.2010.10.004
CrossRef $2$-Banach spaces and related topics" target="_blank">Google Scholar |
[28] | T. M. Rassias, On a modified Hyers-Ulam sequence, J. Math. Anal. Appl., 1991, 158(1), 106–113. doi: 10.1016/0022-247X(91)90270-A |
[29] | K. Y. N. Sayar and A. Bergam, Some hyperstability results for a Cauchy-Jensen type functional equation in $2$-Banach spaces, Proyecciones, 2020, 39(1), 73–89. doi: 10.22199/issn.0717-6279-2020-01-0005 |