Citation: | Tadeusz Antczak. OPTIMALITY RESULTS FOR NONDIFFERENTIABLE VECTOR OPTIMIZATION PROBLEMS WITH VANISHING CONSTRAINTS[J]. Journal of Applied Analysis & Computation, 2023, 13(5): 2613-2629. doi: 10.11948/20220465 |
At present, some real extremum problems related to the activity of modern man, for example, in industry, economy, optimal control, engineering, mechanics, are modeled by optimization problems with vanishing constraints. In this paper, a class of nondifferentiable vector optimization problems with vanishing constraints is considered in which every component of the involved functions is locally Lipschitz. This kind of extremum problems is generally difficult to deal with, because of a special structure of constraints. The Karush-Kuhn-Tucker necessary optimality conditions are established for foregoing nonsmooth multicriteria optimization problems under the VC-Cottle constraint qualification. Sufficient optimality conditions are also proved for the considered nondifferentiable vector optimization problem with vanishing constraints under convexity hypotheses.
[1] | W. Achtziger and C. Kanzow, Mathematical programs with vanishing constraints: optimality conditions and constraint qualifications, Math. Program., 2008, 114, 69–99. doi: 10.1007/s10107-006-0083-3 |
[2] | W. Achtziger, T. Hoheisel and C. A. Kanzow, Smoothing-regularization approach to mathematical programs with vanishing constraints, Comput. Optim. Appl., 2013, 55, 733–767. doi: 10.1007/s10589-013-9539-6 |
[3] | I. Ahmad, K. Kummari and S. Al-Homidan, Sufficiency and duality for interval-valued optimization problems with vanishing constraints using weak constraint qualifications, Int. J. Anal. Appl., 2020, 18, 784–798. |
[4] | T. Antczak, Optimality conditions and Mond-Weir duality for a class of differentiable semi-infinite multiobjective programming problems with vanishing constraints, 4OR, 2022, 20, 417–442. doi: 10.1007/s10288-021-00482-1 |
[5] | J. S. Ardakani, R. S. H. Farahmand, N. Kanzi and P.R. Ardabili, Necessary stationary conditions for multiobjective optimization, Iran. J. Sci. Technol. Trans. A Sci., 2019, 43, 2913–2919. doi: 10.1007/s40995-019-00768-4 |
[6] | D. Barilla, G. Caristi and N. Kanzi, Stationarity condition for nonsmooth MPVCs with constraint set, in: Y. D. Sergeyev and D. E. Kvasov (eds.), NUMTA 2019, LNCS 11974, 314–321, Springer Nature Switzerland AG, 2020. |
[7] | F H. Clarke, Optimization and Nonsmooth Analysis, A Wiley-Interscience Publication, John Wiley & Sons, Inc., 1983. |
[8] | A. Dhara and A. Mehra, Metric regularity and optimality conditions in nonsmooth optimization. in: Mishra, S K. (ed.), Topics in Nonconvex Optimization: Theory and Applications. Springer Optimization and its Applications Vol. 50, 101–114, Springer New York Dordrecht Heidelberg London, 2011. |
[9] | D. Dorsch, V. Shikhman and O. Stein, Mathematical programs with vanishing constraints: Critical point theory, J. Global Optim., 2012, 52, 591–605. doi: 10.1007/s10898-011-9805-z |
[10] | J. P. Dussault, M. Haddou and T. Migot, Mathematical programs with vanishing constraints: constraint qualifications, their applications and a new regularization method, Optimization, 2018, 68, 509–538. |
[11] | S. M. Guu, Y. Singh, and S.K. Mishra, On strong KKT type sufficient optimality conditions for multiobjective semi-infinite programming problems with vanishing constraints, J. Inequal. Appl., 2017, 2017, 282. doi: 10.1186/s13660-017-1558-x |
[12] | T. Hoheisel and C. Kanzow, First- and second-order optimality conditions for mathematical programs with vanishing constraints, Appl. Math., 2007, 52, 495–514. doi: 10.1007/s10492-007-0029-y |
[13] | T. Hoheisel and C. Kanzow, Stationary conditions for mathematical programs with vanishing constraints using weak constraint qualifications, J. Math. Anal. Appl., 2008, 337, 292–310. doi: 10.1016/j.jmaa.2007.03.087 |
[14] | T. Hoheisel and C. Kanzow, On the Abadie and Guignard constraint qualifications for mathematical programmes with vanishing constraints, Optimization, 2009, 58, 431–448. doi: 10.1080/02331930701763405 |
[15] | T. Hoheisel, C. Kanzow and A. Schwartz, Mathematical programs with vanishing constraints: a new regularization approach with strong convergence properties, Optimization, 2012, 61, 619–636. doi: 10.1080/02331934.2011.608164 |
[16] | Q. Hu, J. Wang, and Y. Chen, New dualities for mathematical programs with vanishing constraints, Ann. Oper. Res., 2020, 287, 233–255. doi: 10.1007/s10479-019-03409-6 |
[17] | A. F. Izmailov and M. F. Solodov, Mathematical programs with vanishing constraints: optimality conditions. sensitivity, and relaxation method, J. Optim. Theory Appl., 2009, 142, 501–532. doi: 10.1007/s10957-009-9517-4 |
[18] | R. A. Jabr, Solution to economic dispatching with disjoint feasible regions via semidefinite programming, IEEE Trans. Power Syst., 2012, 27, 572–573. doi: 10.1109/TPWRS.2011.2166009 |
[19] | M. N. Jung, Ch. Kirches and S. Sager, On perspective functions and vanishing constraints in mixed-integer nonlinear optimal control, in: M. Jünger and G. Reinelt (eds.), Facets of Combinatorial Optimization, Springer, Heidelberg, 2013, 387–417. |
[20] | S. Kazemi and N. Kanzi, Constraint qualifications and stationary conditions for mathematical programming with non-differentiable vanishing constraints, J. Optim. Theory Appl., 2018, 179, 800–819. doi: 10.1007/s10957-018-1373-7 |
[21] | A. Khare and T. Nath, Enhanced Fritz John stationarity, new constraint qualifications and local error bound for mathematical programs with vanishing constraints, J. Math. Anal. Appl., 2019, 472, 1042–1077. doi: 10.1016/j.jmaa.2018.11.063 |
[22] | C. Kirches, A. Potschka, H. G. Bock, and S. Sager, A parametric active set method for quadratic programs with vanishing constraints, Pacific J. Optim., 2013, 9, 275–299. |
[23] | N. J. Michael, C. Kirches and S. Sager, On perspective functions and vanishing constraints in mixedinteger nonlinear optimal control, in: M. Jünger and G. Reinelt (eds.), Facets of combinatorial optimization. Berlin, Springer, 2013, 387–417. |
[24] | S. K. Mishra, V. Singh, V. Laha and R. N. Mohapatra, On constraint qualifications for multiobjective optimization problems with vanishing constraints, in: H., Xu, S. Wang and S. -Y. Wu (eds.), Optimization Methods, Theory and Applications, 95–135, Berlin, Heidelberg Springer, 2015. |
[25] | S. K. Mishra, V. Singh and V. Laha, On duality for mathematical programs with vanishing constraints, Ann. Oper. Res., 2016, 243, 249–272. doi: 10.1007/s10479-015-1814-8 |
[26] | R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, New Jersey, 1970. |
[27] | T. V. Su and D. D. Hang, Optimality conditions and duality theorems for nonsmooth semi-infinite interval-valued mathematical programs with vanishing constraints, Comput. Appl. Math., 2022, 41, 422. doi: 10.1007/s40314-022-02139-z |
[28] | L. T. Tung, Karush-Kuhn-Tucker optimality conditions and duality for multiobjective semi-infinite programming with vanishing constraints, Ann. Oper. Res., 2022, 311, 1307–1334. doi: 10.1007/s10479-020-03742-1 |
[29] | H. Wang and H. Wang, Duality theorems for nondifferentiable semi-infinite interval-valued optimization problems with vanishing constraints, J. Inequal. Appl., 2021, 2021, 182. doi: 10.1186/s13660-021-02717-5 |