2023 Volume 13 Issue 5
Article Contents

Martin Bohner, Hassan El-Morshedy, Said Grace, Irena Jadlovská. OSCILLATION OF SECOND-ORDER HALF-LINEAR NEUTRAL NONCANONICAL DYNAMIC EQUATIONS[J]. Journal of Applied Analysis & Computation, 2023, 13(5): 2646-2658. doi: 10.11948/20220484
Citation: Martin Bohner, Hassan El-Morshedy, Said Grace, Irena Jadlovská. OSCILLATION OF SECOND-ORDER HALF-LINEAR NEUTRAL NONCANONICAL DYNAMIC EQUATIONS[J]. Journal of Applied Analysis & Computation, 2023, 13(5): 2646-2658. doi: 10.11948/20220484

OSCILLATION OF SECOND-ORDER HALF-LINEAR NEUTRAL NONCANONICAL DYNAMIC EQUATIONS

  • In this paper, we shall establish some new criteria for the oscillation of certain second-order noncanonical dynamic equations with a sublinear neutral term. This task is accomplished by reducing the involved nonlinear dynamic equation to a second-order linear dynamic inequality. We also establish some new oscillation theorems involving certain integral conditions. Three examples, illustrating our results, are presented. Our results generalize results for corresponding differential and difference equations.

    MSC: 34C10, 34K11
  • 加载中
  • [1] S. Abbas, S. S. Negi, S. R. Grace, et al., Survey on qualitative theory of dynamic equations on time scale, Mem. Differ. Equ. Math. Phys., 2021, 84, 1–67.

    Google Scholar

    [2] R. P. Agarwal, M. Bohner, T. Li and C. Zhang, Comparison theorems for oscillation of second-order neutral dynamic equations, Mediterr. J. Math., 2014, 11(4), 1115–1127. doi: 10.1007/s00009-013-0353-2

    CrossRef Google Scholar

    [3] H. A. H. Agwa, H. M. Arafa, M. Bohner and M. A. A. Naby, Oscillation of second-order integro-dynamic equations with damping and distributed deviating arguments, J. Nonlinear Convex Anal., 2022, 23(6), 1275–1288.

    Google Scholar

    [4] M. Bohner, H. A. El-Morshedy, S. R. Grace and I. Sağer, Oscillation of second-order nonlinear difference equations with sublinear neutral term, Math. Morav., 2019, 23(1), 1–10. doi: 10.5937/MatMor1901001B

    CrossRef Google Scholar

    [5] M. Bohner, L. Erbe and A. Peterson, Oscillation for nonlinear second order dynamic equations on a time scale, J. Math. Anal. Appl., 2005, 301(2), 491–507. doi: 10.1016/j.jmaa.2004.07.038

    CrossRef Google Scholar

    [6] M. Bohner, S. R. Grace and I. Jadlovská, Asymptotic behavior of solutions of forced third-order dynamic equations, Analysis (Berlin), 2019, 39(1), 1–6.

    Google Scholar

    [7] M. Bohner, T. S. Hassan and T. Li, Fite–Hille–Wintner-type oscillation criteria for second-order half-linear dynamic equations with deviating arguments, Indag. Math. (N.S. ), 2018, 29(2), 548–560. doi: 10.1016/j.indag.2017.10.006

    CrossRef Google Scholar

    [8] M. Bohner and T. Li, Oscillation of second-order p-Laplace dynamic equations with a nonpositive neutral coefficient, Appl. Math. Lett., 2014, 37, 72–76. doi: 10.1016/j.aml.2014.05.012

    CrossRef Google Scholar

    [9] M. Bohner and T. Li, Kamenev-type criteria for nonlinear damped dynamic equations, Sci. China Math., 2015, 58(7), 1445–1452. doi: 10.1007/s11425-015-4974-8

    CrossRef Google Scholar

    [10] M. Bohner and A. Peterson, Dynamic equations on time scales, Birkhäuser Boston, Inc., Boston, MA, 2001. An introduction with applications.

    Google Scholar

    [11] M. Bohner and S. H. Saker, Oscillation of second order nonlinear dynamic equations on time scales, Rocky Mountain J. Math., 2004, 34(4), 1239–1254.

    Google Scholar

    [12] J. Džurina, S. R. Grace, I. Jadlovská and T. Li, Oscillation criteria for second-order Emden–Fowler delay differential equations with a sublinear neutral term, Math. Nachr., 2020, 293(5), 910–922. doi: 10.1002/mana.201800196

    CrossRef Google Scholar

    [13] S. G. Georgiev, Functional dynamic equations on time scales, Springer, Cham., 2019.

    Google Scholar

    [14] S. R. Grace, S. Abbas and J. R. Graef, Oscillation of even order nonlinear dynamic equations on time-scales, Math. Morav., 2022, 26(1), 47–55. doi: 10.5937/MatMor2201047G

    CrossRef Google Scholar

    [15] S. R. Grace, R. P. Agarwal, M. Bohner and D. O'Regan, Oscillation of second-order strongly superlinear and strongly sublinear dynamic equations, Commun. Nonlinear Sci. Numer. Simul., 2009, 14(8), 3463–3471. doi: 10.1016/j.cnsns.2009.01.003

    CrossRef Google Scholar

    [16] B. Karpuz, Sharp oscillation and nonoscillation tests for delay dynamic equations, Math. Methods Appl. Sci., 2019, 42(9), 2993–3001. doi: 10.1002/mma.5558

    CrossRef Google Scholar

    [17] Z. Kayar and B. Kaymakçalan, Applications of the novel diamond alpha Hardy-Copson type dynamic inequalities to half linear difference equations, J. Difference Equ. Appl., 2022, 28(4), 457–484. doi: 10.1080/10236198.2022.2042522

    CrossRef Google Scholar

    [18] N. Kılıç and O. Öcalan, Oscillation criteria for first-order dynamic equations with nonmonotone delays, Hacet. J. Math. Stat., 2021, 50(2), 318–325. doi: 10.15672/hujms.674428

    CrossRef Google Scholar

    [19] T. Li, N. Pintus and G. Viglialoro, Properties of solutions to porous medium problems with different sources and boundary conditions, Z. Angew. Math. Phys., 2019, 70(3), 1–18.

    Google Scholar

    [20] T. Li and Y. V. Rogovchenko, Oscillation of second-order neutral differential equations, Math. Nachr., 2015, 288(10), 1150–1162. doi: 10.1002/mana.201300029

    CrossRef Google Scholar

    [21] T. Li and Y. V. Rogovchenko, Oscillation criteria for second-order superlinear Emden-Fowler neutral differential equations, Monatsh. Math., 2017, 184(3), 489–500. doi: 10.1007/s00605-017-1039-9

    CrossRef Google Scholar

    [22] T. Li and Y. V. Rogovchenko, On the asymptotic behavior of solutions to a class of third-order nonlinear neutral differential equations, Appl. Math. Lett., 2020, 105, 1–7.

    Google Scholar

    [23] T. Li and S. H. Saker, A note on oscillation criteria for second-order neutral dynamic equations on isolated time scales, Commun. Nonlinear Sci. Numer. Simul., 2014, 19(12), 4185–4188. doi: 10.1016/j.cnsns.2014.04.015

    CrossRef Google Scholar

    [24] T. Li and G. Viglialoro, Boundedness for a nonlocal reaction chemotaxis model even in the attraction-dominated regime, Differential Integral Equations, 2021, 34(5–6), 315–336.

    Google Scholar

    [25] S. S. Negi, S. Abbas, M. Malik and S. R. Grace, New oscillation criteria for p-Laplacian dynamic equations on time scales, Rocky Mountain J. Math., 2020, 50(2), 659–670.

    Google Scholar

    [26] Y. Qiu, K. S. Chiu, I. Jadlovská and T. Li, Existence of nonoscillatory solutions to nonlinear higher-order neutral dynamic equations, Adv. Difference Equ., 2020, 475, 1–16.

    Google Scholar

    [27] P. Řehák, A note on transformations of independent variable in second order dynamic equations, in Difference equations and discrete dynamical systems with applications, 312 of Springer Proc. Math. Stat., Springer, Cham., 2020, 335–353.

    Google Scholar

    [28] S. H. Saker, M. M. Osman and D. R. Anderson, Two weighted norm dynamic inequalities with applications on second order half-linear dynamic equations, Qual. Theory Dyn. Syst., 2022, 21(1), 1–26. doi: 10.1007/s12346-021-00531-4

    CrossRef Google Scholar

    [29] Y. Sui and S. Sun, Oscillation of third order nonlinear damped dynamic equation with mixed arguments on time scales, Adv. Difference Equ., 2018, 233, 1–17.

    Google Scholar

    [30] C. Zhang, R. P. Agarwal, M. Bohner and T. Li, Oscillation of second-order nonlinear neutral dynamic equations with noncanonical operators, Bull. Malays. Math. Sci. Soc., 2015, 38(2), 761–778. doi: 10.1007/s40840-014-0048-2

    CrossRef Google Scholar

    [31] Y. Zhou, A. Alsaedi and B. Ahmad, Oscillation and nonoscillation theorems of neutral dynamic equations on time scales, Adv. Difference Equ., 2019, 404, 1–11.

    Google Scholar

Article Metrics

Article views(1867) PDF downloads(321) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint