Citation: | Martin Bohner, Hassan El-Morshedy, Said Grace, Irena Jadlovská. OSCILLATION OF SECOND-ORDER HALF-LINEAR NEUTRAL NONCANONICAL DYNAMIC EQUATIONS[J]. Journal of Applied Analysis & Computation, 2023, 13(5): 2646-2658. doi: 10.11948/20220484 |
In this paper, we shall establish some new criteria for the oscillation of certain second-order noncanonical dynamic equations with a sublinear neutral term. This task is accomplished by reducing the involved nonlinear dynamic equation to a second-order linear dynamic inequality. We also establish some new oscillation theorems involving certain integral conditions. Three examples, illustrating our results, are presented. Our results generalize results for corresponding differential and difference equations.
[1] | S. Abbas, S. S. Negi, S. R. Grace, et al., Survey on qualitative theory of dynamic equations on time scale, Mem. Differ. Equ. Math. Phys., 2021, 84, 1–67. |
[2] | R. P. Agarwal, M. Bohner, T. Li and C. Zhang, Comparison theorems for oscillation of second-order neutral dynamic equations, Mediterr. J. Math., 2014, 11(4), 1115–1127. doi: 10.1007/s00009-013-0353-2 |
[3] | H. A. H. Agwa, H. M. Arafa, M. Bohner and M. A. A. Naby, Oscillation of second-order integro-dynamic equations with damping and distributed deviating arguments, J. Nonlinear Convex Anal., 2022, 23(6), 1275–1288. |
[4] | M. Bohner, H. A. El-Morshedy, S. R. Grace and I. Sağer, Oscillation of second-order nonlinear difference equations with sublinear neutral term, Math. Morav., 2019, 23(1), 1–10. doi: 10.5937/MatMor1901001B |
[5] | M. Bohner, L. Erbe and A. Peterson, Oscillation for nonlinear second order dynamic equations on a time scale, J. Math. Anal. Appl., 2005, 301(2), 491–507. doi: 10.1016/j.jmaa.2004.07.038 |
[6] | M. Bohner, S. R. Grace and I. Jadlovská, Asymptotic behavior of solutions of forced third-order dynamic equations, Analysis (Berlin), 2019, 39(1), 1–6. |
[7] | M. Bohner, T. S. Hassan and T. Li, Fite–Hille–Wintner-type oscillation criteria for second-order half-linear dynamic equations with deviating arguments, Indag. Math. (N.S. ), 2018, 29(2), 548–560. doi: 10.1016/j.indag.2017.10.006 |
[8] | M. Bohner and T. Li, Oscillation of second-order p-Laplace dynamic equations with a nonpositive neutral coefficient, Appl. Math. Lett., 2014, 37, 72–76. doi: 10.1016/j.aml.2014.05.012 |
[9] | M. Bohner and T. Li, Kamenev-type criteria for nonlinear damped dynamic equations, Sci. China Math., 2015, 58(7), 1445–1452. doi: 10.1007/s11425-015-4974-8 |
[10] | M. Bohner and A. Peterson, Dynamic equations on time scales, Birkhäuser Boston, Inc., Boston, MA, 2001. An introduction with applications. |
[11] | M. Bohner and S. H. Saker, Oscillation of second order nonlinear dynamic equations on time scales, Rocky Mountain J. Math., 2004, 34(4), 1239–1254. |
[12] | J. Džurina, S. R. Grace, I. Jadlovská and T. Li, Oscillation criteria for second-order Emden–Fowler delay differential equations with a sublinear neutral term, Math. Nachr., 2020, 293(5), 910–922. doi: 10.1002/mana.201800196 |
[13] | S. G. Georgiev, Functional dynamic equations on time scales, Springer, Cham., 2019. |
[14] | S. R. Grace, S. Abbas and J. R. Graef, Oscillation of even order nonlinear dynamic equations on time-scales, Math. Morav., 2022, 26(1), 47–55. doi: 10.5937/MatMor2201047G |
[15] | S. R. Grace, R. P. Agarwal, M. Bohner and D. O'Regan, Oscillation of second-order strongly superlinear and strongly sublinear dynamic equations, Commun. Nonlinear Sci. Numer. Simul., 2009, 14(8), 3463–3471. doi: 10.1016/j.cnsns.2009.01.003 |
[16] | B. Karpuz, Sharp oscillation and nonoscillation tests for delay dynamic equations, Math. Methods Appl. Sci., 2019, 42(9), 2993–3001. doi: 10.1002/mma.5558 |
[17] | Z. Kayar and B. Kaymakçalan, Applications of the novel diamond alpha Hardy-Copson type dynamic inequalities to half linear difference equations, J. Difference Equ. Appl., 2022, 28(4), 457–484. doi: 10.1080/10236198.2022.2042522 |
[18] | N. Kılıç and O. Öcalan, Oscillation criteria for first-order dynamic equations with nonmonotone delays, Hacet. J. Math. Stat., 2021, 50(2), 318–325. doi: 10.15672/hujms.674428 |
[19] | T. Li, N. Pintus and G. Viglialoro, Properties of solutions to porous medium problems with different sources and boundary conditions, Z. Angew. Math. Phys., 2019, 70(3), 1–18. |
[20] | T. Li and Y. V. Rogovchenko, Oscillation of second-order neutral differential equations, Math. Nachr., 2015, 288(10), 1150–1162. doi: 10.1002/mana.201300029 |
[21] | T. Li and Y. V. Rogovchenko, Oscillation criteria for second-order superlinear Emden-Fowler neutral differential equations, Monatsh. Math., 2017, 184(3), 489–500. doi: 10.1007/s00605-017-1039-9 |
[22] | T. Li and Y. V. Rogovchenko, On the asymptotic behavior of solutions to a class of third-order nonlinear neutral differential equations, Appl. Math. Lett., 2020, 105, 1–7. |
[23] | T. Li and S. H. Saker, A note on oscillation criteria for second-order neutral dynamic equations on isolated time scales, Commun. Nonlinear Sci. Numer. Simul., 2014, 19(12), 4185–4188. doi: 10.1016/j.cnsns.2014.04.015 |
[24] | T. Li and G. Viglialoro, Boundedness for a nonlocal reaction chemotaxis model even in the attraction-dominated regime, Differential Integral Equations, 2021, 34(5–6), 315–336. |
[25] | S. S. Negi, S. Abbas, M. Malik and S. R. Grace, New oscillation criteria for p-Laplacian dynamic equations on time scales, Rocky Mountain J. Math., 2020, 50(2), 659–670. |
[26] | Y. Qiu, K. S. Chiu, I. Jadlovská and T. Li, Existence of nonoscillatory solutions to nonlinear higher-order neutral dynamic equations, Adv. Difference Equ., 2020, 475, 1–16. |
[27] | P. Řehák, A note on transformations of independent variable in second order dynamic equations, in Difference equations and discrete dynamical systems with applications, 312 of Springer Proc. Math. Stat., Springer, Cham., 2020, 335–353. |
[28] | S. H. Saker, M. M. Osman and D. R. Anderson, Two weighted norm dynamic inequalities with applications on second order half-linear dynamic equations, Qual. Theory Dyn. Syst., 2022, 21(1), 1–26. doi: 10.1007/s12346-021-00531-4 |
[29] | Y. Sui and S. Sun, Oscillation of third order nonlinear damped dynamic equation with mixed arguments on time scales, Adv. Difference Equ., 2018, 233, 1–17. |
[30] | C. Zhang, R. P. Agarwal, M. Bohner and T. Li, Oscillation of second-order nonlinear neutral dynamic equations with noncanonical operators, Bull. Malays. Math. Sci. Soc., 2015, 38(2), 761–778. doi: 10.1007/s40840-014-0048-2 |
[31] | Y. Zhou, A. Alsaedi and B. Ahmad, Oscillation and nonoscillation theorems of neutral dynamic equations on time scales, Adv. Difference Equ., 2019, 404, 1–11. |