2023 Volume 13 Issue 5
Article Contents

De-Yu Kong, Bang-Sheng Han. LONG-TIME ASYMPTOTIC BEHAVIOR OF FISHER-KPP EQUATION FOR NONLOCAL DISPERSAL IN ASYMMETRIC KERNEL[J]. Journal of Applied Analysis & Computation, 2023, 13(5): 2659-2669. doi: 10.11948/20220521
Citation: De-Yu Kong, Bang-Sheng Han. LONG-TIME ASYMPTOTIC BEHAVIOR OF FISHER-KPP EQUATION FOR NONLOCAL DISPERSAL IN ASYMMETRIC KERNEL[J]. Journal of Applied Analysis & Computation, 2023, 13(5): 2659-2669. doi: 10.11948/20220521

LONG-TIME ASYMPTOTIC BEHAVIOR OF FISHER-KPP EQUATION FOR NONLOCAL DISPERSAL IN ASYMMETRIC KERNEL

  • In this paper, we main consider the asymptotic spreading speeds and the long-time asymptotic behavior of a nonlocal with asymmetric kernel diffusion Fisher-KPP equation

    $ u_{t}(t, x)=k\ast u(t, x)-u(t, x)+f\left(u(t, x)\right), \; t>0, \; x\in\mathbb{R}. $

    On the basis of the spreading speeds $ c_r^*=c(\lambda_r^*) $ and $ c_l^*=c(\lambda_l^*) $, the long-time asymptotic behavior is given by constructing a suitable upper solution and lower solution and using the tool of comparison principle. In particular, the core difficulty and breakthrough point is the lower bounds part. In this regard, we improve the "forward-backward spreading" method which was first proposed by Xu et al. (J Funct Anal 280(2021)108957) to fit the corresponding lower solution so that the asymptotic behavior can be obtained for the initial values that decays within a certain range of asymptotic decay rate $ \lambda_1\in (0, \lambda^+) $ and $ \lambda_2\in (\lambda^-, 0) $.

    MSC: 35K57, 35K90, 92D25
  • 加载中
  • [1] D. Aronson and H. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, Partial differential equations and related topics, Springer, Berlin, 1975, 446.

    Google Scholar

    [2] P. Bates, On some nonlocal evolution equations arising in materials science, Nonlinear Dyn. Evol. Equ., 2006, 48, 13–52.

    Google Scholar

    [3] P. Bates, P. Fife, X. Ren and X. Wang, Traveling waves in a convolution model for phase transitions, Arch. Ration. Mech. Anal., 1997, 138(2), 105–136. doi: 10.1007/s002050050037

    CrossRef Google Scholar

    [4] J. Carr and A. Chmaj, Uniqueness of travelling waves for nonlocal monostable equations, Proc. Am. Math. Soc., 2004, 132(8), 2433–2439. doi: 10.1090/S0002-9939-04-07432-5

    CrossRef Google Scholar

    [5] J. Coville, J. Dávila and S. Martínez, Nonlocal anisotropic dispersal with monostable nonlinearity, J. Differ. Equ., 2008, 244(12), 3080–3118. doi: 10.1016/j.jde.2007.11.002

    CrossRef Google Scholar

    [6] F. Dong, W. Li, S. Wu and L. Zhang, Entire solutions originating from monotone fronts for nonlocal dispersal equations with bistable nonlinearity, Discrete Contin. Dyn. Syst. Ser., 2021 26(2), 1031–1060.

    Google Scholar

    [7] J. Garnier, Accelerating solutions in integro-differential equations, SIAM J. Math. Anal., 2011, 43(4), 1955–1974. doi: 10.1137/10080693X

    CrossRef Google Scholar

    [8] B. Han, M. Chang and W. Bo, Traveling waves for a Belousov-Zhabotinsky reaction-diffusion system with nonlocal effect, Nonlinear Anal. Real World Appl., 2022, 64, 13.

    Google Scholar

    [9] R. Hu, W. Li and W. Xu, Propagation phenomena for man-environment epidemic model with nonlocal dispersals, J. Nonlinear Sci., 2022, 32(5), 57.

    Google Scholar

    [10] C. Kao, Y. Lou and W. Shen, Random dispersal vs. non-local dispersal, Discrete Contin. Dyn. Syst., 2010, 26(2), 551–596. doi: 10.3934/dcds.2010.26.551

    CrossRef Google Scholar

    [11] F. Lutscher, E. Pachepsky and M. Lewis, The effect of dispersal patterns on stream populations, SIAM J. Appl. Math., 2005, 65(4), 1305–1327. doi: 10.1137/S0036139904440400

    CrossRef Google Scholar

    [12] W. Li, Y. Sun and Z. Wang, Entire solutions in the Fisher-KPP equation with nonlocal dispersal, Nonlinear Anal. Real World Appl., 2010, 11(4), 2302–2313. doi: 10.1016/j.nonrwa.2009.07.005

    CrossRef Google Scholar

    [13] X. Liang and T. Zhou, Spreading speeds of nonlocal KPP equations in almost periodic media, J. Funct. Anal., 2020, 279(9), 58.

    Google Scholar

    [14] W. Sheng, M. Wang and Z. Wang, Entire solutions of time periodic bistable Lotka-Volterra competition-diffusion systems in Rn, Calc. Var. Partial Differential Equations, 2021, 60, 47.

    Google Scholar

    [15] Z. Xu, Asymptotic speeds of spread for a nonlocal diffusion equation, J. Dynam. Differential Equations, 2018, 30(2), 473–499.

    Google Scholar

    [16] W. Xu, W. Li and S. Ruan, Spatial propagation in an epidemic model with nonlocal diffusion: the influences of initial data and dispersals, Sci. China Math., 2020, 63(11), 2177–2206.

    Google Scholar

    [17] W. Xu, W. Li and S. Ruan, Spatial propagation in nonlocal dispersal Fisher-KPP equations, J. Funct. Anal., 2021, 280(10), 35.

    Google Scholar

Article Metrics

Article views(1870) PDF downloads(422) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint