Citation: | De-Yu Kong, Bang-Sheng Han. LONG-TIME ASYMPTOTIC BEHAVIOR OF FISHER-KPP EQUATION FOR NONLOCAL DISPERSAL IN ASYMMETRIC KERNEL[J]. Journal of Applied Analysis & Computation, 2023, 13(5): 2659-2669. doi: 10.11948/20220521 |
In this paper, we main consider the asymptotic spreading speeds and the long-time asymptotic behavior of a nonlocal with asymmetric kernel diffusion Fisher-KPP equation
$ u_{t}(t, x)=k\ast u(t, x)-u(t, x)+f\left(u(t, x)\right), \; t>0, \; x\in\mathbb{R}. $
On the basis of the spreading speeds $ c_r^*=c(\lambda_r^*) $ and $ c_l^*=c(\lambda_l^*) $, the long-time asymptotic behavior is given by constructing a suitable upper solution and lower solution and using the tool of comparison principle. In particular, the core difficulty and breakthrough point is the lower bounds part. In this regard, we improve the "forward-backward spreading" method which was first proposed by Xu et al. (J Funct Anal 280(2021)108957) to fit the corresponding lower solution so that the asymptotic behavior can be obtained for the initial values that decays within a certain range of asymptotic decay rate $ \lambda_1\in (0, \lambda^+) $ and $ \lambda_2\in (\lambda^-, 0) $.
[1] | D. Aronson and H. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, Partial differential equations and related topics, Springer, Berlin, 1975, 446. |
[2] | P. Bates, On some nonlocal evolution equations arising in materials science, Nonlinear Dyn. Evol. Equ., 2006, 48, 13–52. |
[3] | P. Bates, P. Fife, X. Ren and X. Wang, Traveling waves in a convolution model for phase transitions, Arch. Ration. Mech. Anal., 1997, 138(2), 105–136. doi: 10.1007/s002050050037 |
[4] | J. Carr and A. Chmaj, Uniqueness of travelling waves for nonlocal monostable equations, Proc. Am. Math. Soc., 2004, 132(8), 2433–2439. doi: 10.1090/S0002-9939-04-07432-5 |
[5] | J. Coville, J. Dávila and S. Martínez, Nonlocal anisotropic dispersal with monostable nonlinearity, J. Differ. Equ., 2008, 244(12), 3080–3118. doi: 10.1016/j.jde.2007.11.002 |
[6] | F. Dong, W. Li, S. Wu and L. Zhang, Entire solutions originating from monotone fronts for nonlocal dispersal equations with bistable nonlinearity, Discrete Contin. Dyn. Syst. Ser., 2021 26(2), 1031–1060. |
[7] | J. Garnier, Accelerating solutions in integro-differential equations, SIAM J. Math. Anal., 2011, 43(4), 1955–1974. doi: 10.1137/10080693X |
[8] | B. Han, M. Chang and W. Bo, Traveling waves for a Belousov-Zhabotinsky reaction-diffusion system with nonlocal effect, Nonlinear Anal. Real World Appl., 2022, 64, 13. |
[9] | R. Hu, W. Li and W. Xu, Propagation phenomena for man-environment epidemic model with nonlocal dispersals, J. Nonlinear Sci., 2022, 32(5), 57. |
[10] | C. Kao, Y. Lou and W. Shen, Random dispersal vs. non-local dispersal, Discrete Contin. Dyn. Syst., 2010, 26(2), 551–596. doi: 10.3934/dcds.2010.26.551 |
[11] | F. Lutscher, E. Pachepsky and M. Lewis, The effect of dispersal patterns on stream populations, SIAM J. Appl. Math., 2005, 65(4), 1305–1327. doi: 10.1137/S0036139904440400 |
[12] | W. Li, Y. Sun and Z. Wang, Entire solutions in the Fisher-KPP equation with nonlocal dispersal, Nonlinear Anal. Real World Appl., 2010, 11(4), 2302–2313. doi: 10.1016/j.nonrwa.2009.07.005 |
[13] | X. Liang and T. Zhou, Spreading speeds of nonlocal KPP equations in almost periodic media, J. Funct. Anal., 2020, 279(9), 58. |
[14] | W. Sheng, M. Wang and Z. Wang, Entire solutions of time periodic bistable Lotka-Volterra competition-diffusion systems in Rn, Calc. Var. Partial Differential Equations, 2021, 60, 47. |
[15] | Z. Xu, Asymptotic speeds of spread for a nonlocal diffusion equation, J. Dynam. Differential Equations, 2018, 30(2), 473–499. |
[16] | W. Xu, W. Li and S. Ruan, Spatial propagation in an epidemic model with nonlocal diffusion: the influences of initial data and dispersals, Sci. China Math., 2020, 63(11), 2177–2206. |
[17] | W. Xu, W. Li and S. Ruan, Spatial propagation in nonlocal dispersal Fisher-KPP equations, J. Funct. Anal., 2021, 280(10), 35. |