2023 Volume 13 Issue 5
Article Contents

Lingling Liu, Ke-wei Ding, Zhiheng Yu. DYNAMICS OF A TWO-PREY AND ONE PREDATOR SYSTEM WITH QUADRATIC SELF INTERACTION[J]. Journal of Applied Analysis & Computation, 2023, 13(5): 2670-2681. doi: 10.11948/20220524
Citation: Lingling Liu, Ke-wei Ding, Zhiheng Yu. DYNAMICS OF A TWO-PREY AND ONE PREDATOR SYSTEM WITH QUADRATIC SELF INTERACTION[J]. Journal of Applied Analysis & Computation, 2023, 13(5): 2670-2681. doi: 10.11948/20220524

DYNAMICS OF A TWO-PREY AND ONE PREDATOR SYSTEM WITH QUADRATIC SELF INTERACTION

  • Author Bio: Email: a600aa@163.com(L. Liu); Email: bluedkw@163.com(K. Ding)
  • Corresponding author: Email: yuzhiheng9@163.com(Z. Yu)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (No. 12171337), China Scholarship Council (Nos. 202108515063, 202100850001), Fundamental Research Funds for the Central Universities (No. 2021128) and National Science Foundation of Sichuan Province (Nos. 2022NSFSC1834, 2022NSFSC1793, 2023NSFSC0064)
  • A two-prey and one-predator system with quadratic self-interaction is discussed on subsets of special biological sense, none of which is closed under operations of the polynomial ring. The known work studied the stability of the boundary equilibria and gave invariant algebraic surfaces up to degree two but no further discussion for bifurcations. In this paper, we investigate the finite and infinite equilibria and their qualitative properties in the first octant. Moreover, we discuss their bifurcations, such as transcritical bifurcation on boundary equilibria, and give the bifurcation diagram. Finally, simulation examples are given to illustrate the theoretical results in this paper.

    MSC: 34C23, 34C60, 37G10
  • 加载中
  • [1] I. K. Aybar, O. O. Aybar, M. Dukarić and B. Ferčec, Dynamical analysis of a two prey-one predator system with quadratic self interaction, Appl. Math. & Comput., 2018, 333, 118–132.

    Google Scholar

    [2] W. Aziz, Integrability and linearizability problems of three dimensional Lotka-Volterra equations of rank-2, Qual. Theory Dyn. Syst., 2019, 18, 1113–1134. doi: 10.1007/s12346-019-00329-5

    CrossRef Google Scholar

    [3] T. Bountis, Z. Zhunussova, K. Dosmagulova and G. Kanellopoulos, Integrable and non-integrable Lotka-Volterra systems, Phys. Lett. A, 2021, 402, article number: 127360.

    Google Scholar

    [4] J. Carr, Applications of Centre Manifold Theory, Springer, New York, 1981.

    Google Scholar

    [5] H. Chen and C. Zhang, Analysis of the dynamics of a predator-prey model with Holling functional response, J. Nonlinear Model. Anal., 2022, 4(2), 310–324.

    Google Scholar

    [6] A. Cima and J. Llibre, Bounded polynomial vector fields, Trans. Amer. Math. Soc., 1990, 318, 557–579. doi: 10.1090/S0002-9947-1990-0998352-5

    CrossRef Google Scholar

    [7] F. Gantmacher, The Theory of Matrices, Chelsea, New York, 1959.

    Google Scholar

    [8] P. Gatabazi, J. C. Mba, E. Pindza and C. Labuschagne, Grey Lotka-Volterra models with application to cryptocurrencies adoption, Chaos, Solitons & Fractals, 2019, 122, 47–57.

    Google Scholar

    [9] J. K. Hale, Ordinary Differential Equations, Wiley Interscience, New York, 1980.

    Google Scholar

    [10] S. B. Hsu, S. P. Hubbell and P. Waltman, Competing predators, SIAM J. Appl. Math., 1978, 35, 617–625. doi: 10.1137/0135051

    CrossRef Google Scholar

    [11] J. P. Keener, Oscillatory coexistence in the chemostat: A codimension two unfolding, SIAM J. Appl. Math., 1983, 43, 1005–1018. doi: 10.1137/0143066

    CrossRef Google Scholar

    [12] Y. Kuang, T. W. Hwang and S. B. Hsu, Global dynamics of a predator-prey model with Hassell-varley type functional response, Discrete Contin. Dyn. Syst. Ser. B, 2012, 10(4), 857–871.

    Google Scholar

    [13] J. Llibre and D. Xiao, Global dynamics of a lotka-volterra model with two predators competing for one prey, SIAM J. Appl. Math., 2014, 74(2), 434–453. doi: 10.1137/130923907

    CrossRef Google Scholar

    [14] J. L. Mata-Machuca, R. M. Martšªnez-Guerra and R. Aguilar-López, Monitoring in a predator-prey systems via a class of high order observer design, Biosystems, 2010, 100(1), 65–69. doi: 10.1016/j.biosystems.2010.01.003

    CrossRef Google Scholar

    [15] H. L. Smith, The interaction of steady state and Hopf bifurcations in a two-predator-one-prey competition model, SIAM J. Appl. Math., 1982, 42, 27–43. doi: 10.1137/0142003

    CrossRef Google Scholar

    [16] Y. Yao and L. Liu, Dynamics of a Leslie-Gower predator-prey system with hunting cooperation and prey harvesting, Discrete Contin. Dyn. Syst. Ser. B, 2022, 27(9), 4787–4815. doi: 10.3934/dcdsb.2021252

    CrossRef Google Scholar

    [17] Y. Zhu, S. Li and Y. Dai, Stability analysis of a fractional predator-prey system with two delays and incommensurate orders, J. Appl. Anal. Comput., 2022, 12(3), 981–1006.

    Google Scholar

Figures(3)  /  Tables(1)

Article Metrics

Article views(1827) PDF downloads(341) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint