Citation: | Jingnan Wang, Li Xu. OPTIMAL CONTROL OF TUMOR-LYMPHATIC MODEL WITH IMMUNO-CHEMOTHERAPY[J]. Journal of Applied Analysis & Computation, 2023, 13(5): 2703-2719. doi: 10.11948/20220553 |
To find optimal methods to inhibit tumors, we propose a tumor-lymphocyte immune optimal model with immuno-chemotherapy. Firstly, we investigate the therapeutic effects of high-dose single immunotherapy and high-dose single chemotherapy for tumor logistic growth, respectively. Furthermore, we apply the optimal control theory to investigate the optimal control problem of immuno-chemotherapy to eliminate tumors, maximize the remaining number of lymphocytes and minimize the cost caused by drugs over a finite time interval. The necessary and sufficient conditions for the existence of optimal control are also discussed. Finally, the numerical results indicate that the effect of immuno-chemotherapy with strong killing rate to tumors and weak killing rate to immune cells is the most effective strategy in inhibiting tumor growth.
[1] | F. M. Burnet, The concept of immunological surveillance, Prog. Exp. Tumor Res, 1970, 13, 1–27. doi: 10.1159/000386035 |
[2] | C. Campos, J. Cristiana and D. F. M. Torres, Numerical optimal control of HIV transmission in Octave/Matlab, Math. Comput. Appl., 2019, 25(1), 1–20. |
[3] | Y. Chen and X. Lai, Modeling the effect of gut microbiome on therapeutic efficacy of immune checkpoint inhibitors against cancer, Math. Biosic., 2022, 350, 108868. doi: 10.1016/j.mbs.2022.108868 |
[4] | L. G. De Pillis and A. E. Radunskaya, A mathematical tumor model with immune resistance and drug therapy: an optimal control approach, Comput. Math. Method M., 2001, 3(2), 79–100. |
[5] | P. Das, S. Das, P. Das, et al., Optimal control strategy for cancer remission using combinatorial therapy: a mathematical model-based approach, Chaos Soliton Fract., 2021, 145, 110789. doi: 10.1016/j.chaos.2021.110789 |
[6] | L. G. De Pillis, W. Gu and A. E. Radunskaya, Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations, J. Theor. Biol., 2006, 238(4), 841–862. doi: 10.1016/j.jtbi.2005.06.037 |
[7] | W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer-Verlag, New York, 1975. |
[8] | M. Grapin, C. Richard, E. Limagne, et al., Optimized fractionated radiotherapy with anti-PD-L1 and anti-TIGIT: a promising new combination, J. Immunother. Cancer, 2019, 7(1), 1–12. doi: 10.1186/s40425-018-0484-x |
[9] | A. Hoos, Evolution of end points for cancer immunotherapy trials, Annals of Oncology, 2012, 23(8), 47–52. |
[10] | V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor, et al., Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis, Bull. Math. Biol., 1994, 56(2), 295–321. doi: 10.1007/BF02460644 |
[11] | A. K. Laird, Dynamics of tumor growth, Brit. J. Cancer, 1964, 13(3), 490–502. |
[12] | D. L. Lukes, Differential Equations: Classical to Controlled, Academic Press, New York, 1982. |
[13] | J. Lackie, A Dictionary of Biomedicine, Oxford University Press, Oxford, 2010. |
[14] | S. Lenhart and J. T. Workman, Optimal Control Applied to Biological Models, Chapman and Hall/CRC, London, 2007. |
[15] | R. Martin and K. L. Teo, Optimal Control of Drug Administration in Cancer Chemotherapy, World Scientific, Singapore, 1993. |
[16] | H. Neves and H. F. Kwok, Recent advances in the field of anti-cancer immunotherapy, BBA Clinical, 2015, 3, 280–288. doi: 10.1016/j.bbacli.2015.04.001 |
[17] | L. Pang, Z. Zhao and X. Song, Cost-effectiveness analysis of optimal strategy for tumor treatment, Chaos Soliton Fract., 2016, 87, 293–301. doi: 10.1016/j.chaos.2016.03.032 |
[18] | L. Pang, S. Liu, X. Zhang, et al., Mathematical modeling and dynamic analysis of anti-tumor immune response, J. Appl. Math. Comput., 2020, 62(1–2), 473–488. doi: 10.1007/s12190-019-01292-9 |
[19] | L. S. Potryagin, The Mathematical Theory of Optimal Processes, CRC Press, New York, 1987, 17–21. |
[20] | F. A. Rihan, S. Lakshmanan and H. Maurer, Optimal control of tumour-immune model with time-delay and immuno-chemotherapy, Appl. Math. Comput., 2019, 353, 147–165. |
[21] | G. W. Swan, Role of optimal control theory in cancer chemotherapy, Math. Biosci., 1990, 101(2), 237–284. |
[22] | Y. Wang, J. Tian and J. Wei, Lytic cycle: a defining process in oncolytic virotherapy, Appl. Math. Model., 2013, 37, 5962–5978. |
[23] | J. Wang and Y. Zhang, Dynamics of immunotherapy antitumor models with impulsive control strategy, Math. Meth. Appl. Sci., 2022, 45, 483–499. |
[24] | H. Zhang and J. Chen, Current status and future directions of cancer immunotherapy, J. Cancer, 2018, 9(10), 1773–1781. |
The variations of the number of tumors with time for single therapy.
Time series plots of optimal states and optimal control variables of the optimality system for different therapeutic strategies.
Efficacy of immuno-chemotherapy for different drug doses.
Time series plots of optimal control variables and efficacy function for the optimal immuno-chemotherapy.