2023 Volume 13 Issue 5
Article Contents

Hefei Zhao, Kuilin Wu. LIMIT CYCLES FOR PIECEWISE LINEAR SYSTEMS WITH IMPROPER NODE[J]. Journal of Applied Analysis & Computation, 2023, 13(5): 2720-2738. doi: 10.11948/20220555
Citation: Hefei Zhao, Kuilin Wu. LIMIT CYCLES FOR PIECEWISE LINEAR SYSTEMS WITH IMPROPER NODE[J]. Journal of Applied Analysis & Computation, 2023, 13(5): 2720-2738. doi: 10.11948/20220555

LIMIT CYCLES FOR PIECEWISE LINEAR SYSTEMS WITH IMPROPER NODE

  • Author Bio: Email: mathzhaohefei@126.com (H. Zhao)
  • Corresponding author: Email: wukuilin@126.com (K. Wu)
  • Fund Project: The authors were supported by National Natural Science Foundation of China(11661017) and Science and Technology Plan Project of Guizhou Province(ZK[2022]G118)
  • This paper is concerned with the number of limit cycles of planar piecewise linear systems for improper node-improper node and improper node-node types with a straight line of separation. We obtain some sufficient conditions for the existence and stability of limit cycles and prove that the systems have at least two nested limit cycles in some parameter regions.

    MSC: 34C05, 34C07, 34C25
  • 加载中
  • [1] A. Andronov, A. Vitt and S. Khaikin, Theory of Osillations, Pergamon Press, Oxford, 1966.

    Google Scholar

    [2] C. A. Buzzi, J. C. R. Medrado and F. Torres, Generic bifurcation of refracted systems, Adv. Math., 2013, 234, 653–666. doi: 10.1016/j.aim.2012.11.008

    CrossRef Google Scholar

    [3] M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-smooth dynamical systems: Theory and applications, Springer, London, 2008.

    Google Scholar

    [4] A. F. Filippov, Differential equations with discontinuous righthand, Springer, London, 1988.

    Google Scholar

    [5] E. Freire, E. Ponce, F. Rodrigo and F. Torres, Bifurcation sets of continuous piecewise linear systems with two zones, Internat. J. Bifur. Chaos, 1998, 8(11), 2073–2097. doi: 10.1142/S0218127498001728

    CrossRef Google Scholar

    [6] E. Freire, E. Ponce and F. Torres, Canonical discontinuous planar piecewise linear systems, SIAM J. Appl. Dyn. Syst., 2012, 11(1), 181–211. doi: 10.1137/11083928X

    CrossRef Google Scholar

    [7] E. Freire, E. Ponce and F. Torres, A general mechanism to generate three limit cycles in planar Filippov systems with two zones, Nonlin. Dynam., 2014, 78(1), 251–263. doi: 10.1007/s11071-014-1437-7

    CrossRef Google Scholar

    [8] F. Giannakopoulos and K. Pliete, Planar systems of piecewise linear differential equations with a line of discontinuity, Nonlinearity, 2001, 14(6), 1611–1632. doi: 10.1088/0951-7715/14/6/311

    CrossRef Google Scholar

    [9] M. Han and W. Zhang, On Hopf bifurcation in non-smooth planar systems, J. Diff. Eqs., 2010, 248(9), 2399–2416. doi: 10.1016/j.jde.2009.10.002

    CrossRef Google Scholar

    [10] S. Huan and X. Yang, On the number of limit cycles in general planar piecewise linear systems, Discrete Contin. Dyn. Syst., 2012, 32(6), 2147–2164. doi: 10.3934/dcds.2012.32.2147

    CrossRef Google Scholar

    [11] S. Huan and X. Yang, Existence of limit cycles in general planar piecewise linear systems of saddle-saddle dynamics, Nonlin. Anal., 2013, 92, 82–95. doi: 10.1016/j.na.2013.06.017

    CrossRef Google Scholar

    [12] S. Huan and X. Yang, On the number of limit cycles in general planar piecewise linear systems of node-node types, J. Math. Anal. Appl., 2014, 411(1), 340–353. doi: 10.1016/j.jmaa.2013.08.064

    CrossRef Google Scholar

    [13] W. Hou and S. Liu, Melnikov functions for a class of piecewise Hamiltonian system, J Nonlin. Model Anal., 2023, 5(1), 123–145.

    Google Scholar

    [14] G. A. Kriegsmann, The rapid bifurcation of the Wien bridge oscillator, IEEE Trans. Circuits Syst., 1987, 34(9), 1093–1096. doi: 10.1109/TCS.1987.1086245

    CrossRef Google Scholar

    [15] R. Lum and L. O. Chua, Global properties of continuous piecewise linear vector fields. Part Ⅰ: Simplest case in $\mathbb{R}^2$, Internat. J. Circuit Theor. Appl., 1991, 19(3), 251–307. doi: 10.1002/cta.4490190305

    CrossRef Google Scholar

    [16] J. Llibre and E. Ponce, Three nested limit cycles in discontinous piecewise linear differential systems with two zones, Discrete Contin. Dyn. Syst. Ser. B, 2012, 19(3), 325–335.

    Google Scholar

    [17] J. Llibre and X. Zhang, Limit cycles for discontinuous planar piecewise linear differential systems separated by one straight line and having a center, J. Math. Anal. Appl., 2018, 467(1), 537–549. doi: 10.1016/j.jmaa.2018.07.024

    CrossRef Google Scholar

    [18] T. Li, H. Chen and X. Chen, Crossing periodic orbits of nonsmooth Liénard systems and applications, Nonlinearity, 2020, 33(11), 5817–5838. doi: 10.1088/1361-6544/ab9bac

    CrossRef Google Scholar

    [19] T. Li and X. Chen, Periodic orbits of linear Filippov systems with a line of discontinuity, Qual. Theor. Dyn. Syst., 2020, 19(1), 1–22. doi: 10.1007/s12346-019-00337-5

    CrossRef Google Scholar

    [20] N. B. Pettit and P. E. Wellstead, Analyzing piecewise linear dynamical systems, IEEE Control Syst. Mag., 1995, 15(5), 43–50. doi: 10.1109/37.466263

    CrossRef Google Scholar

    [21] J. J. Stoker, Nonlinear vibrations in mechanical and electrical systems, Interscience, New York, 1950.

    Google Scholar

    [22] J. Wang, C. Huang and L. Huang, Discontinuity-induced limit cycles in a general planar piecewise linear system of saddle-focus type, Nonlin. Anal. Hybrid Syst., 2019, 33, 162–178. doi: 10.1016/j.nahs.2019.03.004

    CrossRef Google Scholar

    [23] J. Wang, X. Chen and L. Huang, The number and stability of limit cycles for planar piecewise linear systems of node-saddle type, J. Math. Anal. Appl., 2019, 469(1), 405–427. doi: 10.1016/j.jmaa.2018.09.024

    CrossRef Google Scholar

    [24] H. Zhao, K. Wu and Y. Shao, Global dynamics of a planar piececwise linear refracting system of node-node types, Internat. J. Bifur. Chaos, 2022, 32(13), 2250201. doi: 10.1142/S0218127422502017

    CrossRef Google Scholar

Figures(3)

Article Metrics

Article views(1488) PDF downloads(296) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint