2023 Volume 13 Issue 5
Article Contents

Weili Liu, Hongpeng Zhang, Weipeng Zhang, Xuenan Sun. DYNAMICAL BEHAVIORS OF A TUMOR-IMMUNE-VITAMIN MODEL WITH RANDOM PERTURBATION[J]. Journal of Applied Analysis & Computation, 2023, 13(5): 2739-2766. doi: 10.11948/20220558
Citation: Weili Liu, Hongpeng Zhang, Weipeng Zhang, Xuenan Sun. DYNAMICAL BEHAVIORS OF A TUMOR-IMMUNE-VITAMIN MODEL WITH RANDOM PERTURBATION[J]. Journal of Applied Analysis & Computation, 2023, 13(5): 2739-2766. doi: 10.11948/20220558

DYNAMICAL BEHAVIORS OF A TUMOR-IMMUNE-VITAMIN MODEL WITH RANDOM PERTURBATION

  • This paper mainly explores the stochastic behaviors of the interaction between tumor cells and immune cells when vitamins are added. First, it is shown that the stochastic tumor-immune-vitamin model has a unique global positive solution. Second, we obtain that the solution of our model is stochastically ultimately bounded, stochastically permanent, extinct and persistent in mean under some threshold conditions. Moreover, when the perturbation is weak, the stochastic model has a unique stationary distribution. Finally, numerical simulations are performed to verify the theoretical results.

    MSC: 60H10, 65C20
  • 加载中
  • [1] R. Aboulaich, A. Darouichi, I. Elmouki and A. Jraifi, A stochastic optimal control model for BCG immunotherapy in superficial bladder cancer, Math. Model. Nat. Phenom., 2017, 12(5), 99–119. doi: 10.1051/mmnp/201712507

    CrossRef Google Scholar

    [2] S. A. Alharbi and A. S. Rambely, Dynamic behaviour and stabilisation to boost the immune system by complex interaction between tumour cells and vitamins intervention, Adv. Difference Equ., 2020, 412. DOI: 10.1186/s13662-020-02869-6.

    CrossRef Google Scholar

    [3] J. Bao and J. Shao, Permanence and extinction of regime-switching predator-prey models, SIAM J. Math. Anal., 2016, 48(1), 725–739. doi: 10.1137/15M1024512

    CrossRef Google Scholar

    [4] V. I. Bogachev, N. V. Krylov and M. Röckner, On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions, Comm. Partial Differential Equations, 2001, 26(11–12), 2037–2080. doi: 10.1081/PDE-100107815

    CrossRef Google Scholar

    [5] L. Chen and J. Chen, Nonlinear Biological Dynamical System, Science Press, Beijing, 1993.

    Google Scholar

    [6] N. T. Dieu, D. H. Nguyen, N. Du and G. Yin, Classification of asymptotic behavior in a stochastic SIR model, SIAM J. Appl. Dyn. Syst., 2016, 15(2), 1062–1084. doi: 10.1137/15M1043315

    CrossRef Google Scholar

    [7] Y. Ding, G. Liu and Y. An, Stability and bifurcation analysis of a tumor-immune system with two delays and diffusion, Math. Biosci. Eng., 2022, 19(2), 1154–1173.

    Google Scholar

    [8] N. Du, D. H. Nguyen and G. Yin, Conditions for permanence and ergodicity of certain stochastic predator-prey models, J. Appl. Probab., 2016, 53(1), 187–202. doi: 10.1017/jpr.2015.18

    CrossRef Google Scholar

    [9] A. Gerisch, R. Penta and J. Lang, Multiscale models in mechano and tumor biology, Springer, Cham., Switzerland, 2017.

    Google Scholar

    [10] W. Guo and D. Mei, Stochastic resonance in a tumor-immune system subject to bounded noises and time delay, Phys. A., 2014, 416, 90–98. doi: 10.1016/j.physa.2014.08.003

    CrossRef Google Scholar

    [11] D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 2001, 43(3), 525–546. doi: 10.1137/S0036144500378302

    CrossRef Google Scholar

    [12] Y. J. Hong, J. Kim, H. Y. Lee and C. H. Rim, Development of the anti-cancer food scoring system 2.0: validation and nutritional analyses of quantitative anti-cancer food scoring model, Nutr. Res. Pract., 2020, 14(1), 32–44. doi: 10.4162/nrp.2020.14.1.32

    CrossRef Google Scholar

    [13] D. Jafari, A. Esmaeilzadeh, M. Mohammadi-Kordkhayli and N. Rezaei, Vitamin c and the immune system, Springer, Cham., Switzerland, 2019.

    Google Scholar

    [14] H. Khan, F. Hussain and A. Samad, Cure and prevention of diseases with vitamin c into perspective: an overview, J. Crit. Rev., 2020, 7(4), 289–293.

    Google Scholar

    [15] D. Kirschner and J. C. Panetta, Modeling immunotherapy of the tumor-immune interaction, J. Math. Biol., 1998, 37(3), 235–252. doi: 10.1007/s002850050127

    CrossRef Google Scholar

    [16] M. Krstić, On stability of stochastic delay model for tumor-immune interaction, Filomat, 2018, 32(4), 1273–1283. doi: 10.2298/FIL1804273K

    CrossRef Google Scholar

    [17] V. A. Kuznetsov, L. A. Makalkin, M. A. Taylor and A. S. Perelson, Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis, Bull. Math. Biol., 1994, 56(2), 295–321. doi: 10.1007/BF02460644

    CrossRef Google Scholar

    [18] J. Li, X. Xie, Y. Chen and D. Zhang, Complex dynamics of a tumor-immune system with antigenicity, Appl. Math. Comput., 2021, 400, 126052.

    Google Scholar

    [19] D. Li and F. Cheng, The extinction and persistence of tumor evolution influenced by external fluctuations and periodic treatment, Qual. Theory Dyn. Syst., 2019, 18(3), 873–886. doi: 10.1007/s12346-019-00317-9

    CrossRef Google Scholar

    [20] D. Li and Y. Zhao, Survival analysis for tumor cells in stochastic switching environment, Appl. Math. Comput., 2019, 357, 199–205.

    Google Scholar

    [21] X. Li, G. Song, Y. Xia and C. Yuan, Dynamical behaviors of the tumor-immune system in a stochastic environment, SIAM J. Appl. Math., 2019, 79(6), 2193–2217. doi: 10.1137/19M1243580

    CrossRef Google Scholar

    [22] M. Liu and M. Deng, Permanence and extinction of a stochastic hybrid model for tumor growth, Appl. Math. Lett., 2019, 94, 66–72. doi: 10.1016/j.aml.2019.02.016

    CrossRef Google Scholar

    [23] K. J. Mahasa, R. Ouifki, A. L. Eladdadi and L. Pillis, Mathematical model of tumor-immune surveillance, J. Theoret. Biol., 2016, 404, 312–330. doi: 10.1016/j.jtbi.2016.06.012

    CrossRef Google Scholar

    [24] X. Mao, Stochastic differential equations and applications, Second Edition, Horwood Publishing, Chichester, 2008.

    Google Scholar

    [25] X. Mao and C. Yuan, Stochastic Differential Equations with Markovian Switching, Imperial College Press, London, 2006.

    Google Scholar

    [26] M. R. Owen and J. A. Sherratt, Modelling the macrophage invasion of tumors: effects on growth and composition, IMA J. Math. Appl. Med. Biol., 1998, 15(2), 165–185. doi: 10.1093/imammb/15.2.165

    CrossRef Google Scholar

    [27] L. Pillis, A. E. Radunskaya and C. L. Wiseman, A validated mathematical model of cell-mediated immune response to tumor growth, Cancer Res., 2005, 65(17), 7950–7958. doi: 10.1158/0008-5472.CAN-05-0564

    CrossRef Google Scholar

    [28] M. Rajalakshmi and M. Ghosh, Modeling treatment of cancer using virotherapy with generalized logistic growth of tumor cells, Stoch. Anal. Appl., 2018, 36(6), 1068–1086. doi: 10.1080/07362994.2018.1535319

    CrossRef Google Scholar

    [29] T. Suzuki, Mathematical methods for cancer evolution, Springer, Singapore, 2017.

    Google Scholar

    [30] M. Villasana and A. Radunskaya, A delay differential equation model for tumor growth, J. Math. Biol., 2003, 47(3), 270–294. doi: 10.1007/s00285-003-0211-0

    CrossRef Google Scholar

    [31] P. Wang, B. Li and Y. Li, Asymptotic behavior of a stochastic two-species competition system with impulsive effects, Int. J. Nonlinear Sci. Numer. Simul., 2018, 19(5), 427–438. doi: 10.1515/ijnsns-2015-0141

    CrossRef Google Scholar

    [32] J. Wu, D. H. Kirn and L. M. Wein, Analysis of a three-way race between tumor growth, a replication-competent virus and an immune response, Bull. Math. Biol., 2004, 66(4), 605–625. doi: 10.1016/j.bulm.2003.08.016

    CrossRef Google Scholar

Figures(7)  /  Tables(1)

Article Metrics

Article views(1835) PDF downloads(325) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint