2023 Volume 13 Issue 6
Article Contents

Shan Jiang, Xiao Ding, Meiling Sun. PARAMETER-UNIFORM SUPERCONVERGENCE OF MULTISCALE COMPUTATION FOR SINGULAR PERTURBATION EXHIBITING TWIN BOUNDARY LAYERS[J]. Journal of Applied Analysis & Computation, 2023, 13(6): 3330-3351. doi: 10.11948/20230020
Citation: Shan Jiang, Xiao Ding, Meiling Sun. PARAMETER-UNIFORM SUPERCONVERGENCE OF MULTISCALE COMPUTATION FOR SINGULAR PERTURBATION EXHIBITING TWIN BOUNDARY LAYERS[J]. Journal of Applied Analysis & Computation, 2023, 13(6): 3330-3351. doi: 10.11948/20230020

PARAMETER-UNIFORM SUPERCONVERGENCE OF MULTISCALE COMPUTATION FOR SINGULAR PERTURBATION EXHIBITING TWIN BOUNDARY LAYERS

  • Author Bio: Email: 1053471033@qq.com(X. Ding); Email: sunmeiling81@163.com(M. L. Sun)
  • Corresponding author: Email: jiangshan@ntu.edu.cn(S. Jiang) 
  • Fund Project: The authors were supported by National Natural Science Foundation of China (11771224, 12171258) and by Nantong injunctive projects for basic scientific research (JC2021123)
  • We propose a multiscale finite element scheme on a graded mesh for solving a singularly perturbed convection-diffusion problem efficiently. Twin boundary layers phenomena are shown in the one-dimensional model, and an adaptively graded mesh is applied to probe the twin boundary jumps. We evoke an updated multiscale strategy through the multiscale basis functions in a linear Lagrange style. Detailed mapping behaviors are investigated on fine as well as on coarse scales, thus incorporating information at the micro-scale into the macroscopic data. High-order stability theorems in an energy norm of multiscale errors are addressed. Our approach can achieve a parameter-uniform superconvergence with limited computational costs on the coarse graded mesh. Numerical results support the high-order convergence theorem and validate the advantages over other prevalent methods in the literature, especially for the singular perturbation with very small parameters. The proposed method is twin boundary layers resolving as well as parameter uniform superconvergent.

    MSC: 65L11, 65L50, 65L60
  • 加载中
  • [1] M. Brdar, G. Radojev, H. G. Roos and L. Teofanov, Superconvergence analysis of FEM and SDFEM on graded meshes for a problem with characteristic layers, Comput. Math. Appl., 2021, 93, 50–57.

    Google Scholar

    [2] M. Brdar and H. Zarin, A singularly perturbed problem with two parameters on a Bakhvalov-type mesh, J. Comput. Appl. Math., 2016, 292, 307–319. doi: 10.1016/j.cam.2015.07.011

    CrossRef Google Scholar

    [3] M. Brdar, H. Zarin and L. Teofanov, A singularly perturbed problem with two parameters in two dimensions on graded meshes, Comput. Math. Appl., 2016, 72, 2582–2603.

    Google Scholar

    [4] D. F. Cai, Z. Q. Cai and S. Zhang, Robust equilibrated a posteriori error estimator for higher order finite element approximations to diffusion problems, Numer. Math., 2020, 144, 1–21. doi: 10.1007/s00211-019-01075-1

    CrossRef Google Scholar

    [5] Z. D. Cen, A. M. Xu and A. B. Le, A high-order finite difference scheme for a singularly perturbed fourth-order ordinary differential equation, Inter. J. Comput. Math., 2018, 95(9), 1–14.

    Google Scholar

    [6] Y. Cheng, On the local discontinuous Galerkin method for singularly perturbed problem with two parameters, J. Comput. Appl. Math., 2021, 392, 113485. doi: 10.1016/j.cam.2021.113485

    CrossRef Google Scholar

    [7] Y. Cheng, S. Jiang and M. Stynes, Supercloseness of the local discontinuous Galerkin method for a singularly perturbed convection-diffusion problem, Math. Comput., 2023, 92(343), 2065–2095. doi: 10.1090/mcom/3844

    CrossRef Google Scholar

    [8] Y. Cheng, Y. J. Mei and H. G. Roos, The local discontinuous Galerkin method on layer-adapted meshes for time-dependent singularly perturbed convection-diffusion problems, Comput. Math. Appl., 2022, 117, 245–256.

    Google Scholar

    [9] E. Chung and Y. B. Li, Adaptive generalized multiscale finite element methods for H(curl)-elliptic problems with heterogeneous coefficients, J. Computat. Appl. Math., 2019, 345, 357–373. doi: 10.1016/j.cam.2018.06.052

    CrossRef Google Scholar

    [10] P. Constantinou, S. Franz, L. Ludwig and C. Xenophontos, Finite element approximation of reaction-diffusion problems using an exponentially graded mesh, Comput. Math. Appl., 2018, 76, 2523–2534.

    Google Scholar

    [11] R. G. Dur$\acute{a}$n and A. L. Lombardi, Finite element approximation of convection diffusion problems using graded meshes, Appl. Numer. Math., 2006, 56, 1314–1325. doi: 10.1016/j.apnum.2006.03.029

    CrossRef Google Scholar

    [12] E. G. M. Elmahdi and J. F. Huang, Efficient numerical solution of two-dimensional time-space fractional nonlinear diffusion-wave equations with initial singularity, J. Appl. Anal. Comput., 2022, 12(2), 831–849.

    Google Scholar

    [13] F. Z. Geng and S. P. Qian, Reproducing kernel method for singularly perturbed turning point problems having twin boundary layers, Appl. Math. Letters, 2013, 26, 998–1004. doi: 10.1016/j.aml.2013.05.006

    CrossRef Google Scholar

    [14] L. Govindarao and J. Mohapatra, A numerical scheme to solve mixed parabolic-elliptic problem involving singular perturbation, Inter. J. Comput. Math, 2022, 99(10), 2069–2090. doi: 10.1080/00207160.2022.2037131

    CrossRef Google Scholar

    [15] V. Gupta, M. K. Kadalbajoo and R. K. Dubey, A parameter-uniform higher order finite difference scheme for singularly perturbed time-dependent parabolic problem with two small parameters, Inter. J. Comput. Math., 2019, 96(3), 474–499. doi: 10.1080/00207160.2018.1432856

    CrossRef Google Scholar

    [16] S. Jiang, L. Liang, M. L. Sun and F. Su, Uniform high-order convergence of multiscale finite element computation on a graded recursion for singular perturbation, Electr. Research Archive, 2020, 28(2), 935–949. doi: 10.3934/era.2020049

    CrossRef Google Scholar

    [17] S. Jiang, M. Presho and Y. Q. Huang, An adapted Petrov-Galerkin multiscale finite element for singularly perturbed reaction-diffusion problems, Inter. J. Comput. Math., 2016, 93(7), 1200–1211. doi: 10.1080/00207160.2015.1041935

    CrossRef Google Scholar

    [18] S. Jiang, M. L. Sun and Y. Yang, Reduced multiscale computation on adapted grid for the convection-diffusion Robin problem, J. Appl. Anal. Comput., 2017, 7(4), 1488–1502.

    Google Scholar

    [19] M. K. Kadalbajoo, P. Arora and V. Gupta, Collocation method using artificial viscosity for solving stiff singularly perturbed turning point problem having twin boundary layers, Comput. Math. Appl., 2011, 61, 1595–1607.

    Google Scholar

    [20] M. K. Kadalbajoo and V. Gupta, A parameter uniform B-spline collocation method for solving singularly perturbed turning point problem having twin boundary layers, Inter. J. Comput. Math., 2010, 87(14), 3218–3235. doi: 10.1080/00207160902980492

    CrossRef Google Scholar

    [21] M. K. Kadalbajoo and K. C. Patidar, Variable mesh spline approximation method for solving singularly perturbed turning point problems having boundary layer(s), Comput. Math. Appl., 2001, 42, 1439–1453.

    Google Scholar

    [22] A. Kaushik, A. K. Vashishth, V. Kumar and M. Sharma, A modified graded mesh and higher order finite element approximation for singular perturbation problems, J. Comput. Physics, 2019, 395, 275–285. doi: 10.1016/j.jcp.2019.04.073

    CrossRef Google Scholar

    [23] D. Kumar, A parameter-uniform method for singularly perturbed turning point problems exhibiting interior or twin boundary layers, Inter. J. Comput. Math., 2019, 96(5), 865–882. doi: 10.1080/00207160.2018.1458098

    CrossRef Google Scholar

    [24] T. Linb, Layer-adapted meshes for convection-diffusion problems, Comput. Method. Appl. Mech. Engin., 2003, 192, 1061–1105. doi: 10.1016/S0045-7825(02)00630-8

    CrossRef Google Scholar

    [25] X. W. Liu and J. Zhang, Galerkin finite element methods for convection-diffusion problems with exponential layers on Shishkin triangular meshes and hybrid meshes, Appl. Math. Comput., 2017, 307, 244–256.

    Google Scholar

    [26] R. K. Lodhi and H. K. Mishra, Quintic B-spline method for solving second order linear and nonlinear singularly perturbed two-point boundary value problems, J. Comput. Appl. Math., 2017, 319, 170–187. doi: 10.1016/j.cam.2017.01.011

    CrossRef Google Scholar

    [27] S. Natesan, J. Jayakumar and J. Vigo-Aguiar, Parameter-uniform numerical method for singularly perturbed turning point problems exhibiting boundary layers, J. Comput. Appl. Math., 2003, 158, 121–134. doi: 10.1016/S0377-0427(03)00476-X

    CrossRef Google Scholar

    [28] E. Oriordan, M. L. Pickett and G. I. Shishkin, Parameter-uniform finite difference schemes for singularly perturbed parabolic diffusion-convection-reaction problems, Math. Comput., 2006, 75, 1135–1154. doi: 10.1090/S0025-5718-06-01846-1

    CrossRef Google Scholar

    [29] H. G. Roos, L. Teofanov and Z. Uzelac, A modified Bakhvalov mesh, Appl. Math. Letters, 2014, 31, 7–11. doi: 10.1016/j.aml.2014.01.001

    CrossRef Google Scholar

    [30] H. G. Roos, L. Teofanov and Z. Uzelac, Graded meshes for higher order FEM, J. Comput. Math., 2015, 33, 1–16. doi: 10.4208/jcm.1405-m4362

    CrossRef Google Scholar

    [31] K. K. Sharma, P. Rai and K. C. Patidar, A review on singularly perturbed differential equations with turning points and interior layers, Appl. Math. Comput., 2013, 219, 10575–10609.

    Google Scholar

    [32] Q. Yang and M. K. Ni, Asymptotics of a class of singularly perturbed weak nonlinear boundary value problem with a multiple root of the degenerate equation, J. Nonlinear Model. Anal., 2022, 4(3), 502–513.

    Google Scholar

    [33] Y. H. Yin and P. Zhu, The streamline-diffusion finite element method on graded meshes for a convection-diffusion problem, Appl. Numer. Math., 2019, 138, 19–29. doi: 10.1016/j.apnum.2018.12.012

    CrossRef Google Scholar

Figures(6)  /  Tables(3)

Article Metrics

Article views(1329) PDF downloads(440) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint