2024 Volume 14 Issue 1
Article Contents

Nauman Raza, Syeda Sarwat Kazmi, Ghada Ali Basendwah. DYNAMICAL ANALYSIS OF SOLITONIC, QUASI-PERIODIC, BIFURCATION AND CHAOTIC PATTERNS OF LANDAU-GINZBURG-HIGGS MODEL[J]. Journal of Applied Analysis & Computation, 2024, 14(1): 197-213. doi: 10.11948/20230137
Citation: Nauman Raza, Syeda Sarwat Kazmi, Ghada Ali Basendwah. DYNAMICAL ANALYSIS OF SOLITONIC, QUASI-PERIODIC, BIFURCATION AND CHAOTIC PATTERNS OF LANDAU-GINZBURG-HIGGS MODEL[J]. Journal of Applied Analysis & Computation, 2024, 14(1): 197-213. doi: 10.11948/20230137

DYNAMICAL ANALYSIS OF SOLITONIC, QUASI-PERIODIC, BIFURCATION AND CHAOTIC PATTERNS OF LANDAU-GINZBURG-HIGGS MODEL

  • In this manuscript, the Landau-Ginzburg-Higgs (LGH) equation is considered as an investigating model. To extract novel results from the governing equation, the $ G'/(b G'+G+a) $-expansion approach has been employed. Utilizing this approach, the outcomes are attained as hyperbolic and trigonometric functions. Kink, periodic and singular soliton solutions have been recovered by selecting the appropriate values for the parameters. The obtained findings for the LGH equation are displayed in 3-D, contour and 2-D profiles. Using Galilean transformation, the model is converted into a planar dynamical system, and qualitative analysis is investigated. Moreover, chaotic and quasi-periodic patterns have been addressed after including the perturbed term. Simulated results reveal that by modifying amplitude and frequency parameters, the dynamic behavior of the system can also be changed. The recorded results are novel and show the effectiveness and feasibility of the suggested technique for assessing soliton solutions and phase visualizations for different nonlinear models.

    MSC: 78A60, 35Q51, 35Q55
  • 加载中
  • [1] M. A. Abdou, An analytical method for space-time fractional nonlinear differential equations arising in plasma physics, Journal of Ocean Engineering and Science, 2017, 2(4), 288–292. doi: 10.1016/j.joes.2017.09.002

    CrossRef Google Scholar

    [2] T. Abdulkadir Sulaiman and A. Yusuf, Dynamics of lump-periodic and breather waves solutions with variable coefficients in liquid with gas bubbles, Waves in Random and Complex Media, 2021, 1–14.

    Google Scholar

    [3] G. Adomian, Solving frontier problems of physics: The decomposition method, Springer Science and Business Media, 2013, 60.

    Google Scholar

    [4] I. Ahmad, A. Jalil, A. Ullah, S. Ahmad and M. De la Sen, Some new exact solutions of (4+1)-dimensional Davey–-Stewartson-Kadomtsev–-Petviashvili equation, Results in Physics, 2023, 45, 106240. doi: 10.1016/j.rinp.2023.106240

    CrossRef Google Scholar

    [5] K. Ahmad, K. Bibi, M. S. Arif and K. Abodayeh, New Exact Solutions of Landau-Ginzburg-Higgs Equation Using Power Index Method, Journal of Function Spaces, 2023.

    Google Scholar

    [6] Ö. Z. E. R. Ahmet and A. K. I. N. Erhan, Tools for detecting chaos, Sakarya University Journal of Science, 2005, 9(1), 60–66.

    Google Scholar

    [7] L. Akinyemi, q-Homotopy analysis method for solving the seventh-order time-fractional LaxÂ's Korteweg–de Vries and Sawada–Kotera equations, Computational and Applied Mathematics, 2019, 38(4), 191. doi: 10.1007/s40314-019-0977-3

    CrossRef Google Scholar

    [8] L. Akinyemi, H. Rezazadeh, S. W. Yao, M. A. Akbar, M. M. Khater, A. Jhangeer, M. Inc and H. Ahmad, Nonlinear dispersion in parabolic law medium and its optical solitons, Results in Physics, 2021, 26, 104411. doi: 10.1016/j.rinp.2021.104411

    CrossRef Google Scholar

    [9] M. R. Ali, M. A. Khattab and S. M. Mabrouk, Travelling wave solution for the Landau-Ginburg-Higgs model via the inverse scattering transformation method, Nonlinear Dynamics, 2023, 1–11.

    Google Scholar

    [10] H. Almusawa, A. Jhangeer and Z. Hussain, Observation on different dynamics of breaking soliton equation by bifurcation analysis and multistability theory, Results in Physics, 2022, 36, 105364. doi: 10.1016/j.rinp.2022.105364

    CrossRef Google Scholar

    [11] M. F. Alotaibi, N. Raza, M. H. Rafiq and A. Soltani, New solitary waves, bifurcation and chaotic patterns of Fokas system arising in monomode fiber communication system, Alexandria Engineering Journal, 2023, 67,583–595. doi: 10.1016/j.aej.2022.12.069

    CrossRef Google Scholar

    [12] M. I. Asjad, S. Z. Majid, W. A. Faridi and S. M. Eldin, Sensitive analysis of soliton solutions of nonlinear Landau-Ginzburg-Higgs equation with generalized projective Riccati method, AIMS Mathematics, 2023, 8(5), 10210–10227. doi: 10.3934/math.2023517

    CrossRef Google Scholar

    [13] D. Baleanu, M. S. Osman, A. Zubair, N. Raza, O. A. Arqub and W. X. Ma, Soliton solutions of a nonlinear fractional Sasa-Satsuma equation in monomode optical fibers, Applied Mathematics and Information Sciences, 2020, 14(3), 365–374. doi: 10.18576/amis/140302

    CrossRef Google Scholar

    [14] O. A. Bruzzone, D. V. Perri and M. H. Easdale, Vegetation responses to variations in climate: A combined ordinary differential equation and sequential Monte Carlo estimation approach, Ecological Informatics, 2023, 73.

    Google Scholar

    [15] C. Gu, Soliton Theory and its Applications, Springer Science and Business Media, 2013.

    Google Scholar

    [16] A. Hasegawa, Y. Kodama and A. Maruta, Recent progress in dispersion-managed soliton transmission technologies, Optical Fiber Technology, 1997, 3(3), 197–213. doi: 10.1006/ofte.1997.0227

    CrossRef Google Scholar

    [17] J. H. He, Homotopy perturbation technique, Computer methods in applied mechanics and engineering, 1999,178(3–4), 257–262. doi: 10.1016/S0045-7825(99)00018-3

    CrossRef Google Scholar

    [18] B. Hong, Assorted exact explicit solutions for the generalized Atangana's fractional BBM-Burgers equation with the dissipative term, Frontiers in Physics, 2022, 10, 1152.

    Google Scholar

    [19] W. P. Hu, Z. C. Deng, S. M. Han and W. Fa, Multi-symplectic Runge-Kutta methods for Landau-Ginzburg-Higgs equation, Applied Mathematics and Mechanics, 2009, 30(8), 1027–1034. doi: 10.1007/s10483-009-0809-x

    CrossRef Google Scholar

    [20] A. Iftikhar, A. Ghafoor, T. Zubair, S. Firdous and S. T. Mohyud-Din, Solutions of (2+1) dimensional generalized KdV, Sin Gordon and Landau-Ginzburg-Higgs Equations, Scientific Research and Essays, 2013, 8(28), 1349–1359.

    Google Scholar

    [21] M. E. Islam and M. A. Akbar, Stable wave solutions to the Landau-Ginzburg-Higgs equation and the modified equal width wave equation using the IBSEF method, Arab Journal of Basic and Applied Sciences, 2020, 27(1), 270–278. doi: 10.1080/25765299.2020.1791466

    CrossRef Google Scholar

    [22] A. Jhangeer, A. Hussain, M. Junaid-U-Rehman, D. Baleanu and M. B. Riaz, Quasi-periodic, chaotic and travelling wave structures of modified Gardner equation, Chaos, Solitons and Fractals, 2021,143, 110578. doi: 10.1016/j.chaos.2020.110578

    CrossRef Google Scholar

    [23] S. S. Kazmi, A. Jhangeer, N. Raza, H. I. Alrebdi, A. H. Abdel-Aty and H. Eleuch, The analysis of bifurcation, quasi-periodic and solitons patterns to the new form of the generalized q-deformed Sinh-Gordon equation, Symmetry, 2023, 15(7), 1324. doi: 10.3390/sym15071324

    CrossRef Google Scholar

    [24] Y. S. Kivshar and G. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, Academic Press., 2003.

    Google Scholar

    [25] J. Li and F. Chen, Bifurcations and exact traveling wave solutions of degenerate coupled multi-KdV equations, International Journal of Bifurcation and Chaos, 2016, 26(03), 1650045. doi: 10.1142/S0218127416500450

    CrossRef Google Scholar

    [26] C. R. Qin and J. G. Liu, Study on double-periodic soliton and non-traveling wave solutions of integrable systems with variable coefficients, Results in Physics, 2022, 34, 105254. doi: 10.1016/j.rinp.2022.105254

    CrossRef Google Scholar

    [27] N. Raza, M. R. Aslam and H. Rezazadeh, Analytical study of resonant optical solitons with variable coefficients in Kerr and non-Kerr law media, Optical and Quantum Electronics, 2019, 51, 1–12. doi: 10.1007/s11082-018-1712-9

    CrossRef Google Scholar

    [28] N. Raza and S. S. Kazmi, Qualitative analysis and stationary optical patterns of nonlinear Schrödinger equation including nonlinear chromatic dispersion, Optical and Quantum Electronics, 2023, 55(8), 718. doi: 10.1007/s11082-023-04978-4

    CrossRef Google Scholar

    [29] H. Rezazadeh, M. Inc and D. Baleanu, New solitary wave solutions for variants of (3+1)-dimensional Wazwaz-Benjamin-Bona-Mahony equations, Frontiers in Physics, 2020, 8,332. doi: 10.3389/fphy.2020.00332

    CrossRef Google Scholar

    [30] A. Saha, Bifurcation, periodic and chaotic motions of the modified equal width-Burgers (MEW-Burgers) equation with external periodic perturbation, Nonlinear Dynamics, 2017, 87(4), 2193–2201. doi: 10.1007/s11071-016-3183-5

    CrossRef Google Scholar

    [31] F. Salman, N. Raza, G. A. Basendwah and M. M. Jaradat, Optical solitons and qualitative analysis of nonlinear Schrodinger equation in the presence of self steepening and self frequency shift, Results in Physics, 2022, 39, 105753. doi: 10.1016/j.rinp.2022.105753

    CrossRef Google Scholar

    [32] M. Senol, O. S. Iyiola, H. Daei Kasmaei and L. Akinyemi, Efficient analytical techniques for solving time-fractional nonlinear coupled Jaulent–Miodek system with energy-dependent Schrödinger potential, Advances in Difference Equations, 2019, 1–21.

    Google Scholar

    [33] L. Tang, Bifurcation analysis and multiple solitons in birefringent fibers with coupled Schrödinger-Hirota equation, Chaos, Solitons and Fractals, 2022,161, 112383. doi: 10.1016/j.chaos.2022.112383

    CrossRef Google Scholar

    [34] S. F. Tian, M. J. Xu and T. T. Zhang, A symmetry-preserving difference scheme and analytical solutions of a generalized higher-order beam equation, Proceedings of the Royal Society A, 2021,477(2255), 20210455.

    Google Scholar

    [35] A. M. Wazwaz, Multiple-soliton solutions for a (3+1)-dimensional generalized KP equation, Communications in Nonlinear Science and Numerical Simulation, 2012, 17(2), 491–495.

    Google Scholar

    [36] A. Zafar, M. Shakeel, A. Ali, L. Akinyemi and H. Rezazadeh, Optical solitons of nonlinear complex Ginzburg–Landau equation via two modified expansion schemes, Optical and Quantum Electronics, 2022, 54, 1–15.

    Google Scholar

    [37] E. M. Zayed, K. A. Gepreel, R. M. Shohib, M. E. Alngar and Y. Yildirim, Optical solitons for the perturbed Biswas-Milovic equation with Kudryashov's law of refractive index by the unified auxiliary equation method, Optik., 2021,230, 166286.

    Google Scholar

    [38] T. Y. Zhou, B. Tian, C. R. Zhang and S. H. Liu, Auto-Bäcklund transformations, bilinear forms, multiple-soliton, quasi-soliton and hybrid solutions of a (3+1)-dimensional modified Korteweg-de Vries-Zakharov-Kuznetsov equation in an electron-positron plasma, The European Physical Journal Plus, 2022,137(8), 912.

    Google Scholar

    [39] A. Zubair, N. Raza, M. Mirzazadeh, W. Liu and Q. Zhou, Analytic study on optical solitons in parity-time-symmetric mixed linear and nonlinear modulation lattices with non-Kerr nonlinearities, Optik., 2018,173,249–262.

    Google Scholar

Figures(10)

Article Metrics

Article views(1560) PDF downloads(834) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint