Citation: | Hong Lu, Mingji Zhang. UPPER SEMI-CONTINUITY AND REGULARITY OF RANDOM ATTRACTORS FOR STOCHASTIC FRACTIONAL POWER DISSIPATIVE EQUATIONS[J]. Journal of Applied Analysis & Computation, 2024, 14(2): 816-846. doi: 10.11948/20230177 |
This paper is devoted to the study of the asymptotic dynamics of stochastic fractional power dissipative equations with additive noise. A priori estimates for solutions are derived under certain growth conditions for the nonlinearity. We then prove that the random dynamical system has a unique $ (L^2, L^p) $-random attractor with $ p>2 $, and furthermore, the family of random attractors is upper semi-continuous and regular at any point in $ [0, \infty) $ under the topology of $ p $-norms.
[1] | L. Arnold, Random Dynamical Systems, Springer-Verlag, 1998. |
[2] | P. W. Bates, K. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differ. Equ., 2009, 246, 845–869. doi: 10.1016/j.jde.2008.05.017 |
[3] | Z. Brzezniak, T. Caraballo, J. A. Langa, Y. Li, G. Lukaszewiczd and J. Real, Random attractors for stochastic 2D-Navier-Stokes equations in some unbounded domains, J. Differ. Equ., 2013, 255, 3897–3919. doi: 10.1016/j.jde.2013.07.043 |
[4] | Z. Brzezniak and Y. Li, Asymptotic compactness and absorbing sets for 2d stochastic Navier-Stokes equations on some unbounded domains, Trans. Am. Math. Soc., 2006, 358, 5587–5629. doi: 10.1090/S0002-9947-06-03923-7 |
[5] | L. Caffarelli, S. Salsa and L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math., 2008, 171, 425–461. doi: 10.1007/s00222-007-0086-6 |
[6] | T. Caraballo, J. A. Langa and J. C. Robinson, Upper semicontinuity of attractors for small random perturbations of dynamical systems, Comm. Partial Differ. Equ., 1998, 23, 1557–1581. doi: 10.1080/03605309808821394 |
[7] | A. Córdoba and D. Córdoba, A pointwise estimate for fractionary derivatives with applications to partial differential equations, Proc. Natc. Acad. Sci., 2003, 100, 15316–15317. doi: 10.1073/pnas.2036515100 |
[8] | H. Crauel, A. Debussche and F. Flandoli, Random attractors, J. Dyn. Differ. Equ., 1997, 9, 307–341. doi: 10.1007/BF02219225 |
[9] | H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Relat. Fields, 1994, 100, 365–393. doi: 10.1007/BF01193705 |
[10] | A. Debussche, Hausdorff dimension of a random invariant set, J. Math. Pures Appl., 1998, 77, 967–988. doi: 10.1016/S0021-7824(99)80001-4 |
[11] | J. Dong and M. Xu, Space-time fractional Schrödinger equation with time-independent potentials, J. Math. Anal. Appl., 2008, 344, 1005–1017. doi: 10.1016/j.jmaa.2008.03.061 |
[12] | F. Flandoli and B. Schmalfuss, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise, Stoch. Stoch. Rep., 1996, 59, 21–45. doi: 10.1080/17442509608834083 |
[13] | C. W. Gardiner, Handbooks of Stochastic Methods for Physics, Chemistry and Natural Sciences, Springer-Verlag, Berlin, 1983. |
[14] | B. Guo, Y. Han and J. Xin, Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation, J. Appl. Math. Comput., 2008, 204, 468–477. doi: 10.1016/j.amc.2008.07.003 |
[15] | J. K. Hale and G. Raugel, Upper semicontinuity of the attractor for a singularly perturbed hyperbolic equation, J. Differ. Equ., 1988, 73, 197–214. doi: 10.1016/0022-0396(88)90104-0 |
[16] |
Y. Li, H. Cui and J. Li, Upper semi-continuity and regularity of random attractors on $p$-times integrable spaces and applications, Nonlinear Anal. : TMA, 2014, 109, 33–44. doi: 10.1016/j.na.2014.06.013
CrossRef $p$-times integrable spaces and applications" target="_blank">Google Scholar |
[17] | H. Lu, P. W. Bates, S. Lü and M. Zhang, Dynamics of 3D fractional complex Ginzburg-Landau equation, J. Differ. Equ., 2015, 259, 5276–5301. doi: 10.1016/j.jde.2015.06.028 |
[18] | H. Lu, P. W. Bates, S. Lü and M. Zhang, Dynamics of the 3D fractional Ginzburg-Landau equation with multiplicative noise on an unbounded domain, Commun. Math. Sci., 2016, 14, 273–295. doi: 10.4310/CMS.2016.v14.n1.a11 |
[19] | H. Lu, P. W. Bates, J. Xin and M. Zhang, Asymptotic behavior of stochastic fractional power dissipative equation on $\mathbb{R}.n$, Nonlinear Anal. : TMA, 2015, 128, 176–198. doi: 10.1016/j.na.2015.06.033 |
[20] | H. Lu, J. Qi, B. Wang and M. Zhang, Random attractors for non-autonomous fractional stochastic parabolic equations on unbounded domains, Discrete Contin. Dyn. Syst. Ser. A, 2019, 39, 683–706. doi: 10.3934/dcds.2019028 |
[21] | H. Lu, L. Wang, L. Zhang and M. Zhang, Limiting dynamics of non-autonomous stochastic Ginzburg-Landau equations on thin domains, J. Appl. Anal. and Comput., 2021, 11, 2313–2333. |
[22] | H. Lu, L. Wang and M. Zhang, Dynamicas of fractional stochastic Ginzburg-Landau equation driven by nonlinear noise, Mathematics, 2022, 10. |
[23] | H. Lu and M. Zhang, Dynamics of non-autonomous fractional Ginzburg-Landau equations driven by colored noise, Discrete Contin. Dyn. Syst. Ser. B, 2020, 25, 3553–3576. |
[24] | R. R. Nigmatullin, The realization of the generalized transfer equation in a medium with fractal geometry, Phys. Stat. Solidi. B, 1986, 133, 425–430. doi: 10.1002/pssb.2221330150 |
[25] | L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa, 1959, 13, 115–162. |
[26] | J. C. Robinson, Stability of random attractors under perturbation and approximation, J. Differ. Equ., 2002, 186, 652–669. doi: 10.1016/S0022-0396(02)00038-4 |
[27] | A. I. Saichev and G.M. Zaslavsky, Fractional kinetic equations: Solutions and applications, Chaos, 1997, 7, 753–764. doi: 10.1063/1.166272 |
[28] | S. Salsa, Optimal regularity in lower dimensional obstacle problems. Subelliptic PDE's and applications to geometry and finance, Lect. Notes Semin. Interdiscip. Mat., Semin. Interdiscip. Mat. (S.I.M. ), Potenza, 2007, 6, 217–226. |
[29] | S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, New York: Gordon and Breach Science, 1987. |
[30] | M. F. Shlesinger, G. M. Zaslavsky and J. Klafter, Strange kinetics, Nature, 1993, 363, 31–37. doi: 10.1038/363031a0 |
[31] | Y. Sire and E. Valdinoci, Fractional Laplacian phase transitions and boundary reactions: A geometric inequality and a symmetry result, J. Funct. Anal., 2009, 256, 1842–1864. doi: 10.1016/j.jfa.2009.01.020 |
[32] | V. E. Tarasov and G. M. Zaslavsky, Fractional Ginzburg-Landau equation for fractal media, Physica A, 2005, 354, 249–261. doi: 10.1016/j.physa.2005.02.047 |
[33] | R. Temam, Infinite Dimension Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1995. |
[34] | B. Wang, Upper semicontinuity of random attractors for non-compact random dynamical system, Electron. J. Differ. Equ., 2009, 139, 1–18. |
[35] | G. M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics, Oxford University Press, 2005. |
[36] | G. M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport, Physics Reports, 2002, 371, 461–580. doi: 10.1016/S0370-1573(02)00331-9 |
[37] | G. M. Zaslavsky and M. Edelman, Weak mixing and anomalous kinetics along filamented surfaces, Chaos, 2001, 11, 295–305. doi: 10.1063/1.1355358 |
[38] |
W. Q. Zhao and Y. R. Li, $(L.2, L.p)$-random attractors for stochastic reaction-diffusion on unbounded domains, Nonlinear Anal., 2012, 75, 485–502. doi: 10.1016/j.na.2011.08.050
CrossRef $(L.2, L.p)$-random attractors for stochastic reaction-diffusion on unbounded domains" target="_blank">Google Scholar |