2024 Volume 14 Issue 2
Article Contents

Antonio Algaba, Cristóbal García, Manuel Reyes, Jaume Giné. ANALYTICAL INTEGRABILITY OF PERTURBATIONS OF DEGENERATE QUADRATIC SYSTEMS[J]. Journal of Applied Analysis & Computation, 2024, 14(2): 864-885. doi: 10.11948/20230188
Citation: Antonio Algaba, Cristóbal García, Manuel Reyes, Jaume Giné. ANALYTICAL INTEGRABILITY OF PERTURBATIONS OF DEGENERATE QUADRATIC SYSTEMS[J]. Journal of Applied Analysis & Computation, 2024, 14(2): 864-885. doi: 10.11948/20230188

ANALYTICAL INTEGRABILITY OF PERTURBATIONS OF DEGENERATE QUADRATIC SYSTEMS

  • Author Bio: Email: algaba@uhu.es(A. Algaba); Email: cristoba@uhu.es(C. García); Email: colume@uhu.es(M. Reyes)
  • Corresponding author: Email: jaume.gine@udl.cat(J. Giné)
  • Fund Project: This work has been partially supported by Ministerio de Ciencia, Innovación y Universidades, Spain (project PGC2018-096265-B-I00) and by Consejería de Economía, Innovación, Ciencia y Empleo de la Junta de Andalucía, Spain (projects FQM-276, UHU-1260150 and P12-FQM-1658). The fourth author is partially supported by the Agencia Estatal de Investigación grant PID2020-113758GB-I00 and an AGAUR (Generalitat de Catalunya) grant number 2021SGR 01678
  • We consider analytic perturbations of quadratic homogeneous differential systems having an isolated singularity at the origin. Here we characterize the analytically integrable perturbations of quadratic homogeneous systems of the form $ (\dot{x}, \dot{y})^T=f_1(P_1, Q_1)^T $ with $ f_1(x, y) $ a non-zero linear homogeneous polynomial and $ P_1(x, y), Q_1(x, y) $ non-zero linear homogeneous polynomials without common factors. We prove that all systems are orbitally equivalent to their quasi-homogeneous leading terms with respect to a certain type but not necessarily to the homogeneous leading terms. This result completes the previous results for the analytic perturbations of irreducible quadratic systems with analytic first integral which are orbitally equivalent to the homogeneous leading term, i.e. all are homogenizable.

    MSC: 34C05, 34A05, 34C20, 34C14
  • 加载中
  • [1] A. Algaba, I. Checa, C. García and J. Giné, Analytic integrability inside a family of degenerate centers, Nonlinear Anal. Real World Appl., 2016, 31, 288–307. doi: 10.1016/j.nonrwa.2016.02.003

    CrossRef Google Scholar

    [2] A. Algaba, M. Díaz, C. García and J. Giné, Analytic integrability around a nilpotent singularity: The non-generic case. Commun. Pure Appl. Anal., 2020, 19(1), 407–423. doi: 10.3934/cpaa.2020021

    CrossRef Google Scholar

    [3] A. Algaba, E. Gamero and C. García, The integrability problem for a class of planar systems, Nonlinearity, 2009, 22, 395–420. doi: 10.1088/0951-7715/22/2/009

    CrossRef Google Scholar

    [4] A. Algaba, C. García and J. Giné, Analytic integrability for some degenerate planar vector fields, J. Differential Equations, 2014, 257(2), 549–565. doi: 10.1016/j.jde.2014.04.010

    CrossRef Google Scholar

    [5] A. Algaba, C. García and J. Giné, Analytic integrability around a nilpotent singularity, J. Differential Equations, 2019, 267, 443–467. doi: 10.1016/j.jde.2019.01.015

    CrossRef Google Scholar

    [6] A. Algaba, C. García and M. Reyes, Analytical integrability of degenerate generalized Lotka-Volterra systems, Submitted to publication.

    Google Scholar

    [7] A. Algaba, C. García and M. Reyes, Analytical integrability of perturbations of quadratic systems, Mediterr. J. Math., 2021, 18(8), 17 pp.

    Google Scholar

    [8] A. Algaba, C. García and M. Reyes, Analytically integrable centers of perturbations of cubic homogeneous, Qual. Theory Dyn. Syst., 2021, 20(2), Paper No. 43, 17 pp.

    Google Scholar

    [9] A. Algaba, C. García and M. Reyes, Analytical integrability problem for perturbations of cubic Kolmogorov systems, Chaos Solitons Fractals, 2018, 113, 1–10. doi: 10.1016/j.chaos.2018.05.011

    CrossRef Google Scholar

    [10] A. Algaba, C. García, M. Reyes and J. Giné, Analytic integrable system orbitally equivalent to a semi-quasihomogeneous system, Nonlinear Anal., 2023, 234, Paper No. 113304, 11 pp.

    Google Scholar

    [11] V. V. Basov, Generalized normal form and formal equivalence of two-dimensional systems with zero quadratic approximation III, Differ. Uravn., 2006, 42(3), 308–319.

    Google Scholar

    [12] V. V. Basov and A. V. Skitovich, Generalized normal form and formal equivalence of two-dimensional systems with zero quadratic approximation I, Differ. Uravn., 2003, 39(8), 1016–1029.

    Google Scholar

    [13] V. V. Basov and A. V. Skitovich, Generalized normal form and formal equivalence of two-dimensional systems with zero quadratic approximation II, Differ. Uravn., 2005, 41(8), 1011–1023.

    Google Scholar

    [14] V. V. Basov and E. V. Fedorova, Generalized normal form and formal equivalence of two-dimensional systems with zero quadratic approximation IV, Differ. Uravn., 2009, 45(3), 308–319.

    Google Scholar

    [15] A. D Bruno, Local Methods in Nonlinear Differential Equations, Ed. Springer-Verlag, 1980.

    Google Scholar

    [16] X. Chen, J. Giné, V. G. Romanovski and D. S. Shafer, The $ 1:-q $ resonant center problem for certain cubic Lotka-Volterra systems, Appl. Math. Comput., 2012, 218(23), 11620–11633.

    $ 1:-q $ resonant center problem for certain cubic Lotka-Volterra systems" target="_blank">Google Scholar

    [17] C. Christopher and C. Rousseau, Normalizable, integrable and linearizable saddle points in the Lotka-Volterra system, Qual. Theory Dyn. Syst., 2004, 5(1), 11–61. doi: 10.1007/BF02968129

    CrossRef Google Scholar

    [18] W. Cong, J. Llibre and X. Zhang, Generalized rational first integrals of analytic differential systems, J. Differ. Equations, 2011, 251(10), 2770–2788. doi: 10.1016/j.jde.2011.05.016

    CrossRef Google Scholar

    [19] D. Dolićanin, J. Giné, R. Oliveira and V. G. Romanovski, The center problem for a $ 2:-3 $ resonant cubic Lotka-Volterra system, Appl. Math. Comput., 2013, 220, 12–19.

    $ 2:-3 $ resonant cubic Lotka-Volterra system" target="_blank">Google Scholar

    [20] B. Ferčec and J. Giné, A blow-up method to prove formal integrability for some planar differential systems, J. Appl. Anal. Comput., 2018, 8(6), 1833–1850.

    Google Scholar

    [21] B. Ferčec and J. Giné, Blow-up method to compute necessary conditions of integrability for planar differential systems, Appl. Math. Comput., 2019, 358, 16–24.

    Google Scholar

    [22] J. Giné and J. Llibre, On the planar integrable differential systems, Z. Angew. Math. Phys., 2011, 62(4), 567–574. doi: 10.1007/s00033-011-0116-5

    CrossRef Google Scholar

    [23] J. Giné and V. G. Romanovski, Integrability conditions for Lotka-Volterra planar complex quintic systems, Nonlinear Anal. Real World Appl., 2010, 11(3), 2100–2105. doi: 10.1016/j.nonrwa.2009.06.002

    CrossRef Google Scholar

    [24] M. Han and K. Jiang, Normal forms of integrable systems at a resonant saddle, Ann. Differential Equations, 1998, 14(2), 150–155.

    Google Scholar

    [25] C. Liu, G. Chen and G. Chen, Integrability of Lotka-Volterra type systems of degree 4, J. Math. Anal. Appl., 2012, 388(2), 1107–1116. doi: 10.1016/j.jmaa.2011.10.056

    CrossRef Google Scholar

    [26] C. Liu, G. Chen and C. Li, Integrability and linearizability of the Lotka-Volterra systems, J. Differential Equations, 2004, 198(2), 301–320. doi: 10.1016/S0022-0396(03)00196-7

    CrossRef Google Scholar

    [27] J. Llibre, C. Valls and X. Zhang, The completely integrable differential systems are essentially linear differential systems, J. Nonlinear Sci., 2015, 25(4), 815–826. doi: 10.1007/s00332-015-9243-z

    CrossRef Google Scholar

    [28] J. F. Mattei and R. Moussu, Holonomie et intégrales premières, Ann. Sci. École Norm. Sup., 1980, 13(4), 469–523. doi: 10.24033/asens.1393

    CrossRef Google Scholar

    [29] H. Poincaré, Mémoire sur les courbes définies par les équations différentielles, J. Math. Pures Appl., 1885, 4, 167–244; Oeuvres de Henri Poincaré, vol. I. Paris: Gauthier-Villars, 1951, 95–114.

    Google Scholar

    [30] E. Stróżyna, Normal forms for germs of vector fields with quadratic leading part. The polynomial first integral case, J. Differential Equations, 2015, 259, 6718–6748.

    Google Scholar

    [31] Q. Wang and W. Huang, Integrability and linearizability for Lotka-Volterra systems with the $ 3:-q $ resonant saddle point, Adv. Difference Equ., 2014, 2014(23).

    $ 3:-q $ resonant saddle point" target="_blank">Google Scholar

    [32] Q. Zhang and Y. Liu, Integrability and generalized center problem of resonant singular point, Appl. Math. Lett., 2015, 40, 13–16.

    Google Scholar

Article Metrics

Article views(1316) PDF downloads(266) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint