Citation: | Daniele C. R. Gomes, Mauro A. Rincon, Maria Darci G. da Silva, Gladson O. Antunes. NUMERICAL AND MATHEMATICAL ANALYSIS OF A NONLINEAR SCHRÖDINGER PROBLEM WITH MOVING ENDS[J]. Journal of Applied Analysis & Computation, 2024, 14(2): 886-910. doi: 10.11948/20230189 |
Existence and uniqueness of solution in $ \mathbb{R}^n $ for a nonlinear Shrödinger equation in a domain with moving ends and an optimal algorithm to obtain an approximate numerical solution for the two-dimensional space. The linearized Crank-Nicolson-Galerkin method is proposed to achieve high-performance computing. Numerical examples for the two-dimensional domain are presented to confirm the theoretical analysis and numerical results. Numerical errors associated with the linear, quadratic and cubic base are displayed.
[1] | R. M. P. Almeida, J. C. M. Duque, J. Ferreira and R. J. Robalo, Finite element schemes for a class of nonlocal parabolic systems with moving boundaries, Journal of Applied Numerical Mathematics, 2018, 127, 226–248. DOI: 10.1016/j.apnum.2018.01.007. |
[2] | G. A. Baker, Error estimates for finite element methods for second order hyperbolic equations, SIAM Journal on Numerical Analysis, 1976, 13(4), 564–576. DOI: 10.2307/2156246. |
[3] | J. E. Barab, Nonexistence of asymptotically free solutions for a nonlinear Schrodinger equation, Journal of Mathematical Physics, 1984, 25, 3270–3273. DOI: 10.1063/1.526074. |
[4] | C. Besse, A relaxation scheme for the nonlinear Schrodinger equation, SIAM Journal on Numerical Analysis, 2004, 42(3), 934–952. DOI: 10.1137/S0036142901396521. |
[5] | P. Cannarsa, G. da Prato, and J. P. Zolesio, The damped wave equation in a moving domain, Journal of Differential Equations, 1990, 85(1), 1–16. doi: 10.1016/0022-0396(90)90086-5 |
[6] | X. Carvajal, M. Panthee and M. Scialom, On well-posedness of the third-order nonlinear Schrodinger equation with time-dependent coefficients, Communications in Contemporary Mathematics, 2015, 17(04). DOI: 10.1142/S021919971450031X. |
[7] | T. Cazenave, Semilinear Schrodinger Equations, Courant Lecture Notes in Mathematics, AMS, New York, 2003, 10. |
[8] | F. G. Ciarlet, The Finite Element Method for Elliptic Problems, Classics in applied mathematics, SIAM, Paris, France, 2002, 40. |
[9] | R. Cipolatti, J. L. Gondar and C. Trallero-Giner, Bose-Einstein condensates in optical lattices: Mathematical analysis and analytical approximate formulae, Physica D: Nonlinear Phenomena, Amsterdam, 2012, 241(7), 755–763. DOI: 10.1016/j.physd.2011.12.012. |
[10] | H. R. Clark, M. A. Rincon and R. D. Rodrigues, Beam equation with weak-internal damping in domain with moving boundary, Journal of Applied Numerical Mathematics, 2003, 47(2), 139–157. doi: 10.1016/S0168-9274(03)00066-7 |
[11] | F. Dalfovo and S. Giorgini, Theory of Bose-Einstein condensation in trapped gases, Reviews of Modern Physics, 1999, 71(3), 463–512. doi: 10.1103/RevModPhys.71.463 |
[12] |
D. C. R. Gomes, M. A. Rincon, M. D. G. Silva and G. O. Antunes, Theoretical and computational analysis of a nonlinear Schrödinger problem with moving boundary, Advances in Computational Mathematics, Springer US, 2019, 45(4), 981–1004. DOI: |
[13] |
D. F. Griffiths, R. Mitchell and J. L. Morris, A numerical study of the nonlinear Schrödinger equation, Computer Methods in Applied Mechanics and Engineering, Springer US, 1984, 45, 177–205. DOI: |
[14] | D. Hartree, The wave mechanics of an atom with a non-Coulomb central field. Part I. Theory and methods, Proc. Camb. Philos. Soc., 1968, (24), 89–132. |
[15] |
P. Henning and J. Wärnegärd, A note on optimal $ H^1 $-error estimates for Crank-Nicolson approximations to the nonlinear Schrödinger equation, BIT Numerical Mathematics, 2020. DOI: 10.1007/s10543-020-00814-3.
CrossRef $ H^1 $-error estimates for Crank-Nicolson approximations to the nonlinear Schrödinger equation" target="_blank">Google Scholar |
[16] | L. I. Ignat and E. Zuazua, Convergence rates for dispersive approximation schemes to nonlinear Schrodinger equations, Journal de Mathématiques Pures et Appliquées, 2012, 98(5), 479–517. doi: 10.1016/j.matpur.2012.01.001 |
[17] | J. Jina and X. Wu, Analysis of finite element method for one-dimensional time-dependent Schrodinger equation on unbounded domain, Journal of Computational and Applied Mathematics, 2008, 220, 240–256. doi: 10.1016/j.cam.2007.08.006 |
[18] | P. L. Kelley, Self-focusing of optical beams, Phys. Rev. Lett., 1965, 15(26), 1005–1008. DOI: 10.1103/PhysRevLett.15.1005. |
[19] | J. L. Lions, Quelques Méthodes de Résolutions des Problémes aux Limites non Linéaires, Dunod, Paris, 1969. |
[20] | I. -S. Liu and M. A. Rincon, Effect of moving boundaries on the vibrating elastic string, Applied Numerical Mathematics, 2003, 47(2), 159–172. doi: 10.1016/S0168-9274(03)00063-1 |
[21] | L. A. Medeiros, J. Límaco and S. B. Menezes, Vibrations of elastic strings: mathematical aspects, Journal of Computational Analysis and applications, 2002, 4, 211–263. doi: 10.1023/A:1013151525487 |
[22] | Y. Mei and R. An, Error estimates of second-order BDF Galerkin finite element methods for a coupled nonlinear Schrödinger system, Computers & Mathematics with Applications, 2022, 122, 117–125. DOI: 10.1016/j.camwa.2022.07.018. |
[23] | M. A. Rincon and M. O. Lacerda, Error analysis of thermal equation with moving ends, Journal of Mathematics and Computers in Simulation, 2010, 80(11), 2200–2215. doi: 10.1016/j.matcom.2010.04.013 |
[24] | M. A. Rincon, I. -S. Liu, W. R. Huarcaya and B. A. Carmo, Numerical analysis for a nonlinear model of elastic strings with moving ends, Applied Numerical Mathematics, 2019, 135, 146–164. DOI: 10.1016/j.apnum.2018.08.014. |
[25] | M. Sepúlveda and O. Vera, Numerical methods for a coupled nonlinear Schrodinger system, Bol. Soc. Esp. Mat. Apl., 2008, 43, 97–104. |
[26] | W. A. Strauss, Nonlinear scattering theory, Scattering Theory in Mathematical Physics, 1974, 53–78. DOI: 10.1007/978-94-010-2147-0_3. |
[27] | K. E. Strecker, G. B. Partridge, A. G. Truscott and R. G. Hulet, Bright matter wave solitons in Bose-Einstein condensates, New Journal of Physics, 2003, 5(73), 1–8. |
[28] | V. Thomée, Galerkin finite element methods for parabolic problems, Springer, Springer Series in Computational Mathematics, Rio de Janeiro, 2006, 25(2). |
[29] | D. A. Vigo, J. C. Xavier and M. A. Rincon, Analysis and computation of a nonlinear Korteweg-de Vries system, BIT Numerical Mathematics, 2016, 56(3), 1069–1099. DOI: 10.1007/s10543-015-0589-2. |
[30] | J. Wang, A new error analysis of Crank-Nicolson Galerkin FEMs for a generalized nonlinear Schrodinger equation, Journal of Scientific Computing, 2014, 60, 390–407. DOI: 10.1007/s10915-013-9799-4. |
[31] | T. Wang, Uniform point-wise error estimates of semi-implicit compact finite difference methods for the nonlinear Schrodinger equation perturbed by wave operator, Journal of Computational and Applied Mathematics, 2015, 422(1), 286–308. |
[32] |
M. L. Wheeler, A priori $ L_2 $ error estimates for Galerkin approximations to parabolic partial differential equations, SIAM Journal on Numerical Analysis, 1973, 10(4), 723–759. doi: 10.1137/0710062
CrossRef $ L_2 $ error estimates for Galerkin approximations to parabolic partial differential equations" target="_blank">Google Scholar |
Numerical error associated with Example 4.1 on Lagrange linear, quadratic and cubic bases.
Numerical solution of the Example 4.1 with boundary
Numerical solution of the Example 4.1 with boundary
Numerical error associated with Example 4.2 on Lagrange linear, quadratic and cubic bases.
Real part of the numerical solution of the Example 4.2 with boundary
Real part of the numerical solution of the Example 4.2 with boundary
Imaginary part of the numerical solution of the Example 4.2 with boundary
Imaginary part of the numerical solution of the Example 4.2 with boundary