2024 Volume 14 Issue 1
Article Contents

Juan Liang, Guiquan Sun. EFFECT OF NONLOCAL DELAY WITH STRONG KERNEL ON VEGETATION PATTERN[J]. Journal of Applied Analysis & Computation, 2024, 14(1): 473-505. doi: 10.11948/20230290
Citation: Juan Liang, Guiquan Sun. EFFECT OF NONLOCAL DELAY WITH STRONG KERNEL ON VEGETATION PATTERN[J]. Journal of Applied Analysis & Computation, 2024, 14(1): 473-505. doi: 10.11948/20230290

EFFECT OF NONLOCAL DELAY WITH STRONG KERNEL ON VEGETATION PATTERN

  • In order to understand the mechanism of water uptake by vegetation, we propose a vegetation-water model with nonlocal effect which is characterised by nonlocal delay with strong kernel in this paper. By mathematical analysis, the condition of producing steady pattern is obtained. Furthermore, the amplitude equation which determines the type of Turing pattern is obtained by nonlinear analysis method. The corresponding vegetation pattern and evolution process under different intensity of nonlocal effect in roots of vegetation are given by numerical simulations. The numerical results show that as intensity of nonlocal effect increases, the isolation degree of vegetation pattern increases which indicates that the robustness of the ecosystem decreases. Besides, the results reveal that with the water diffusion coefficient increases, the change of pattern structure is: stripe pattern$ \rightarrow $mixed pattern$ \rightarrow $spot pattern. Our results show the effects of diffusion coefficient and intensity of nonlocal effect on vegetation distribution, which provide theoretical basis for the study of vegetation.

    MSC: 34C23, 34K20
  • 加载中
  • [1] M. Alfaro, J. Coville and G. Raoul, Travelling waves in a nonlocal reaction-diffusion equation as a model for a population structured by a space variable and a phenotypic trait, Commun. Part. Diff. Eq., 2013, 38(12), 2126–2154. doi: 10.1080/03605302.2013.828069

    CrossRef Google Scholar

    [2] N. Bai and R. Xu, Mathematical analysis of an HIV model with latent reservoir, delayed ctl immune response and immune impairment, Math. Biosci. Eng., 2021, 18(2), 1689–1707. doi: 10.3934/mbe.2021087

    CrossRef Google Scholar

    [3] J. A. Bonachela, R. M. Pringle, E. Sheffer, et al., Termite mounds can increase the robustness of dryland ecosystems to climatic change, Science, 2015, 347(6222), 651–655. doi: 10.1126/science.1261487

    CrossRef Google Scholar

    [4] F. Borgogno, P. Dodorico, F. Laio and L. Ridolfi, Mathmatical models of vegetation pattern formation in ecohydrology, Rev. Geophysics, 2009, 47(1), RG1005.

    Google Scholar

    [5] K. Boushaba and S. G. Ruan, Instability in diffusive ecological models with nonlocal delay effects, J. Math. Anal. Appl., 2001, 258, 269–286. doi: 10.1006/jmaa.2000.7381

    CrossRef Google Scholar

    [6] S. Chen and J. Shi, Stability and Hopf bifurcation in a diffusive logistic population model with nonlocal delay effect, J. Differ. Equations, 2012, 253(12), 3440–3470. doi: 10.1016/j.jde.2012.08.031

    CrossRef Google Scholar

    [7] C. Dineshkumar, R. Udhayakumar, V. Vijayakumar, et al., A note on approximate controllability for nonlocal fractional evolution stochastic integrodifferential inclusions of order $r\in(1, 2)$ with delay, Chaos Soliton. Fract., 2021, 153, 111565. doi: 10.1016/j.chaos.2021.111565

    CrossRef $r\in(1, 2)$ with delay" target="_blank">Google Scholar

    [8] A. Doelman and H. van der Ploeg, Homoclinic stripe patterns, SIAM J. Appl. Dyn. Syst., 2002, 1(1), 65–104. doi: 10.1137/S1111111101392831

    CrossRef Google Scholar

    [9] L. Eigentler and J. A. Sherratt, Analysis of a model for banded vegetation patterns in semi-arid environments with nonlocal dispersal, J. Math. Biol., 2018, 77, 739–763. doi: 10.1007/s00285-018-1233-y

    CrossRef Google Scholar

    [10] M. Fuentes, M. Kuperman and V. Kenkre, Nonlocal interaction effects on pattern formation in population dynamics, Theor. Popul. Biol., 2003, 91(15), 158104.

    Google Scholar

    [11] S. Getzin, H. Yizhaq, B. Belld, et al., Discovery of fairy circles in Australia supports self-organization theory, P. Natl. Acad. Sci. USA, 2016, 113(13), 3551–3556. doi: 10.1073/pnas.1522130113

    CrossRef Google Scholar

    [12] E. Gilad, J. von Hardenberg, A. Provenzale, et al., A mathematical model of plants as ecosystem engineers, J. Theor. Biol., 2007, 244(4), 680–691. doi: 10.1016/j.jtbi.2006.08.006

    CrossRef Google Scholar

    [13] S. Gourley, M. A. Chaplain and F. Davidson, Spatio-temporal pattern formation in a nonlocal reaction-diffusion equation, Dynam. Syst., 2001, 16(2), 173–192. doi: 10.1080/14689360116914

    CrossRef Google Scholar

    [14] S. A. Gourley and S. Ruan, Spatio-temporal delays in a nutrient-plankton model on a finite domain: Linear stability and bifurcations, Appl. Math. Comput., 2003, 145(2–3), 391–412.

    Google Scholar

    [15] S. A. Gourley and J. W. H. So, Dynamics of a food-limited population model incorporating nonlocal delays on a finite domain, J. Math. Biol., 2002, 44, 49–78. doi: 10.1007/s002850100109

    CrossRef Google Scholar

    [16] K. Gowda, H. Riecke and M. Silber, Transitions between patterned states in vegetation models for semiarid ecosystems, Phys. Rev. E, 2014, 89(2), 022701.

    Google Scholar

    [17] S. J. Guo, Stability and bifurcation in a reaction-diffusion model with nonlocal delay effect, J. Differ. Equations, 2015, 259(4), 1409–1448. doi: 10.1016/j.jde.2015.03.006

    CrossRef Google Scholar

    [18] S. J. Guo and S. L. Yan, Hopf bifurcation in a diffusive Lotka-Volterra type system with nonlocal delay effect, J. Differ. Equations, 2016, 260(1), 781–817. doi: 10.1016/j.jde.2015.09.031

    CrossRef Google Scholar

    [19] S. J. Guo and J. Zimmer, Stability of travelling wavefronts in discrete reaction-diffusion equations with nonlocal delay effects, Nonlinearity, 2015, 28(2), 463–492. doi: 10.1088/0951-7715/28/2/463

    CrossRef Google Scholar

    [20] Z. G. Guo, G. Q. Sun, Z. Wang, et al., Spatial dynamics of an epidemic model with nonlocal infection, Appl. Math. Comput., 2020, 377, 125158.

    Google Scholar

    [21] B. S. Han and Z. C. Wang, Turing patterns of a Lotka-Volterra competitive system with nonlocal delay, Int. J. Bifurcat. Chaos, 2018, 28(7), 1830021. doi: 10.1142/S0218127418300215

    CrossRef Google Scholar

    [22] R. HilleRisLambers, M. Rietkerk, F. van den Bosch, et al., Vegetation pattern formation in semi-arid grazing systems, Ecology, 2001, 82(1), 50–61. doi: 10.1890/0012-9658(2001)082[0050:VPFISA]2.0.CO;2

    CrossRef Google Scholar

    [23] L. F. Hou, S. P. Gao and G. Q. Sun, Two types of fairy circles coexist in a vegetation-water model, Nonlinear Dynam., 2023, 111(8), 7883–7898. doi: 10.1007/s11071-022-08197-6

    CrossRef Google Scholar

    [24] L. F. Hou, G. Q. Sun and M. Perc, The impact of heterogeneous human activity on vegetation patterns in arid environments, Commun. Nonlinear Sci., 2023, 126, 107461. doi: 10.1016/j.cnsns.2023.107461

    CrossRef Google Scholar

    [25] B. J. Kealy and D. J. Wollkind, A nonlinear stability analysis of vegetative turing pattern formation for an interaction-diffusion plant-surface water model system in an arid flat environment, B. Math. Biol., 2012, 74(4), 803–833. doi: 10.1007/s11538-011-9688-7

    CrossRef Google Scholar

    [26] S. K$\acute{e}$fi, M. Rietkerk, C. L. Alados, et al., Spatial vegetation patterns and imminent desertification in mediterranean arid ecosystems, Nature, 2007, 449(7159), 213–217. doi: 10.1038/nature06111

    CrossRef Google Scholar

    [27] S. K$\acute{e}$fi, M. Rietkerk and G. G. Katul, Vegetation pattern shift as a result of rising atmospheric $CO_2$ in arid ecosystems, Theor. Popul. Biol., 2008, 74(4), 332–344. doi: 10.1016/j.tpb.2008.09.004

    CrossRef $CO_2$ in arid ecosystems" target="_blank">Google Scholar

    [28] S. K$\acute{e}$fi, M. Rietkerk, M. van Baalen and M. Loreau, Local facilitation, bistability and transitions in arid ecosystems, Theor. Popul. Biol., 2007, 71, 367–379. doi: 10.1016/j.tpb.2006.09.003

    CrossRef Google Scholar

    [29] C. A. Klausmeier, Regular and irregular patterns in semiarid vegetation, Science, 1999, 284, 1826–1828. doi: 10.1126/science.284.5421.1826

    CrossRef Google Scholar

    [30] A. Kletter, J. von Hardenberg, E. Meron and A. Provenzale, Patterned vegetation and rainfall intermittency, J. Theor. Biol., 2009, 256(4), 574–583. doi: 10.1016/j.jtbi.2008.10.020

    CrossRef Google Scholar

    [31] R. Lefever and O. Lejeune, On the origin of tiger bush, B. Math. Biol., 1997, 59, 263–294. doi: 10.1007/BF02462004

    CrossRef Google Scholar

    [32] O. Lejeune, M. Tildi and R. Lefever, Vegetation spots and stripes: Dissipative structures in arid landscapes, Int. J. Quantum Chem., 2004, 98(2), 261–271. doi: 10.1002/qua.10878

    CrossRef Google Scholar

    [33] H. J. Li, W. Xu, S. Song, et al., The dynamics of epidemic spreading on signed networks, Chaos Soliton. Fract., 2021, 151, 111294. doi: 10.1016/j.chaos.2021.111294

    CrossRef Google Scholar

    [34] J. Li, G. Q. Sun and Z. G. Guo, Bifurcation analysis of an extended Klausmeier-Gray-Scott model with infiltration delay, Stud. Appl. Math., 2022, 148, 1519–1542. doi: 10.1111/sapm.12482

    CrossRef Google Scholar

    [35] J. Li, G. Q. Sun and Z. Jin, Interactions of time delay and spatial diffusion induce the periodic oscillation of the vegetation system, Discre. Cont. Dyn. -B, 2022, 27, 2147–2172.

    Google Scholar

    [36] W. T. Li, G. Lin, C. Ma and F. Y. Yang, Traveling wave solutions of a nonlocal delayed SIR model without outbreak threshold, Discre. Cont. Dyn. -B, 2014, 19(2), 467–484.

    Google Scholar

    [37] J. Liang, C. liu, G. Q. Sun, et al., Nonlocal interactions between vegetation induce spatial patterning, Appl. Math. Comput., 2022, 428, 127061.

    Google Scholar

    [38] G. Lin and W. T. Li, Bistable wavefronts in a diffusive and competitive Lotka-Volterra type system with nonlocal delays, J. Differ. Equations, 2008, 244(3), 487–513. doi: 10.1016/j.jde.2007.10.019

    CrossRef Google Scholar

    [39] G. Lin and S. G. Ruan, Traveling wave solutions for delayed reaction-diffusion systems and applications to diffusive Lotka-Volterra competition models with distributed delays, J. Dyn. Differ. Equ., 2014, 26(3), 583–605. doi: 10.1007/s10884-014-9355-4

    CrossRef Google Scholar

    [40] G. Y. Lv and M. X. Wang, Traveling wave front and stability as planar wave of reaction diffusion equations with nonlocal delays, Z. Angew. Math. Phys., 2013, 64(4), 1005–1023. doi: 10.1007/s00033-012-0285-x

    CrossRef Google Scholar

    [41] R. M. May, Thresholds and breakpoints in ecosystems with a multiplicity of stable states, Nature, 1977, 269, 471–477. doi: 10.1038/269471a0

    CrossRef Google Scholar

    [42] S. M. Merchant and W. Nagata, Instabilities and spatiotemporal patterns behind predator invasions with nonlocal prey competition, Theor. Popul. Biol., 2011, 80(4), 289–297. doi: 10.1016/j.tpb.2011.10.001

    CrossRef Google Scholar

    [43] F. I. Pugnaire and M. T. Luque, Changes in plant interactions along a gradient of environmental stress, Oikos, 2001, 93(1), 42–49. doi: 10.1034/j.1600-0706.2001.930104.x

    CrossRef Google Scholar

    [44] J. A. Sherratt, An analysis of vegetation stripe formation in semi-arid landscapes, J. Math. Biol., 2005, 51, 183–197. doi: 10.1007/s00285-005-0319-5

    CrossRef Google Scholar

    [45] J. P. Shi, Z. F. Xie and K. Little, Cross-diddusion induce instability and stability in reaction-diffusion system, J. Appl. Anal. Comput., 2011, 1(1), 95–119.

    Google Scholar

    [46] E. Siero, A. Doelman, M. B. Eppinga, et al., Striped pattern selection by advective reaction-diffusion systems: Resilience of banded vegetation on slopes, Chaos, 2015, 25(3), 036411. doi: 10.1063/1.4914450

    CrossRef Google Scholar

    [47] H. T. Song, G. H. Fan, S. Zhao, et al., Forecast of the COVID–19 trend in India: A simple modelling approach, Math. Biosci. Eng., 2021, 18(6), 9775–9786. doi: 10.3934/mbe.2021479

    CrossRef Google Scholar

    [48] Y. L. Song, S. H. Wu and H. Wang, Spatiotemporal dynamics in the single population model with memory-based diffusion and nonlocal effect, J. Differ. Equations, 2019, 267(11), 6316–6351. doi: 10.1016/j.jde.2019.06.025

    CrossRef Google Scholar

    [49] M. J. Steinbauer, J. A. Grytnes, G. Jurasinski, et al., Accelerated increase in plant species richness on mountain summits is linked to warming, Nature, 2018, 556, 231–250. doi: 10.1038/s41586-018-0005-6

    CrossRef Google Scholar

    [50] G. Q. Sun, M. Jusup, Z. Jin, et al., Pattern transitions in spatial epidemics: Mechanisms and emergent properties, Phys. Life Rev., 2016, 19, 43–73. doi: 10.1016/j.plrev.2016.08.002

    CrossRef Google Scholar

    [51] G. Q. Sun, L. Li, J. Li, et al., Impacts of climate change on vegetation pattern: Mathematical modelling and data analysis, Phys. Life Rev., 2022, 43, 239–270. doi: 10.1016/j.plrev.2022.09.005

    CrossRef Google Scholar

    [52] G. Q. Sun, C. H. Wang, L. L. Chang, et al., Effects of feedback regulation on vegetation patterns in semi-arid environments, Appl. Math. Model., 2018, 61, 200–215. doi: 10.1016/j.apm.2018.04.010

    CrossRef Google Scholar

    [53] G. Q. Sun, H. T. Zhang, Y. L. Song, et al., Dynamic analysis of a plant-water model with spatial diffusion, J. Differ. Equations, 2022, 329, 395–430. doi: 10.1016/j.jde.2022.05.009

    CrossRef Google Scholar

    [54] Q. L. Tang, J. Ge and Z. G. Lin, An SEI-SI avian-human influenza model with diffusion and nonlocal delay, Appl. Math. Comput., 2014, 247, 753–761.

    Google Scholar

    [55] S. Thompson, G. Katul, J. Terborgh and P. Alvarez-Loayza, Spatial organization of vegetation arising from non-local excitation with local inhibition in tropical rainforests, Physica D, 2009, 238, 1061–1067. doi: 10.1016/j.physd.2009.03.004

    CrossRef Google Scholar

    [56] C. J. Tucker, I. Y. Fungt, C. D. Keeling and R. H. Gammon, Relationship between atmospheric $CO_2$ variations and a satellite-derived vegetation index, Nature, 1986, 319, 195–198. doi: 10.1038/319195a0

    CrossRef $CO_2$ variations and a satellite-derived vegetation index" target="_blank">Google Scholar

    [57] J. von Hardenberg, E. Meron, M. Shachak and Y. Zarmi, Diversity of vegetation patterns and desertification, Phys. Rev. Lett., 2001, 87(19), 198101. doi: 10.1103/PhysRevLett.87.198101

    CrossRef Google Scholar

    [58] J. van de Koppel, M. Rietkerk and F. J. Weissing, Catastrophic vegetation shifts and soil degradation in terrestrial grazing systems, Trends Ecol. Evol., 1997, 12, 352–356. doi: 10.1016/S0169-5347(97)01133-6

    CrossRef Google Scholar

    [59] J. B. Wang, W. T. Li and F. Y. Yang, Traveling waves in a nonlocal dispersal SIR model with nonlocal delayed transmission, Commun. Nonlinear Sci., 2015, 27(1–3), 136–152. doi: 10.1016/j.cnsns.2015.03.005

    CrossRef Google Scholar

    [60] M. X. Wang and G. Lv, Entire solutions of a diffusive and competitive Lotka-Volterra type system with nonlocal delays, Nonlinearity, 2010, 23(7), 1609–1630. doi: 10.1088/0951-7715/23/7/005

    CrossRef Google Scholar

    [61] Z. C. Wang, W. T. Li and S. G. Ruan, Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay, J. Differ. Equations, 2007, 238(1), 153–200. doi: 10.1016/j.jde.2007.03.025

    CrossRef Google Scholar

    [62] Z. C. Wang, W. T. Li and S. G. Ruan, Traveling fronts in monostable equations with nonlocal delayed effects, J. Dyn. Differ. Equ., 2008, 20(3), 573–607. doi: 10.1007/s10884-008-9103-8

    CrossRef Google Scholar

    [63] Z. C. Wang, W. T. Li and S. G. Ruan, Entire solutions in bistable reaction-diffusion equations with nonlocal delayed nonlinearity, Tra. Amer. Soc., 2009, 361(4), 2047–2084.

    Google Scholar

    [64] S. Wu, J. Shi and B. Wu, Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis, J. Differ. Equations, 2016, 26(7), 5847–5874.

    Google Scholar

    [65] R. Xu, M. A. J. Chaplain and F. A. Davidson, Travelling wave and covetgence in stage-structured reaction-diffusion competitive models with nonlocal delays, Chaos Soliton. Fract., 2006, 30, 974–992. doi: 10.1016/j.chaos.2005.09.022

    CrossRef Google Scholar

    [66] Q. Xue, C. Liu, L. Li, et al., Interactions of diffusion and nonlocal delay give rise to vegetation patterns in semi-arid environments, Appl. Math. Comput., 2021, 399, 126038.

    Google Scholar

    [67] S. Zaytseva, J. P. Shi and L. B Shaw, Model of pattern formation in marsh ecosystems with nonlocal interactions, J. Math. Biol., 2019, 86, 655–686.

    Google Scholar

    [68] L. Zhang and Z. G. Lin, A Höllings type II prey-predator model with stage structure and nonlocal delay, Appl. Math. Comput., 2011, 217(10), 5000–5010.

    Google Scholar

    [69] J. D. Zhao and T. H. Zhang, Dynamics of two predator-prey models with power law pelation, J. Appl. Anal. Comput., 2023, 13(1), 233–248.

    Google Scholar

Figures(8)  /  Tables(2)

Article Metrics

Article views(1768) PDF downloads(613) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint