2024 Volume 14 Issue 6
Article Contents

Jiemei Li, Liyuan Wang. BOUNDED AND BLOW-UP SOLUTIONS OF K-HESSIAN SYSTEM WITH AUGMENTED TERMS[J]. Journal of Applied Analysis & Computation, 2024, 14(6): 3197-3213. doi: 10.11948/20230492
Citation: Jiemei Li, Liyuan Wang. BOUNDED AND BLOW-UP SOLUTIONS OF K-HESSIAN SYSTEM WITH AUGMENTED TERMS[J]. Journal of Applied Analysis & Computation, 2024, 14(6): 3197-3213. doi: 10.11948/20230492

BOUNDED AND BLOW-UP SOLUTIONS OF K-HESSIAN SYSTEM WITH AUGMENTED TERMS

  • Author Bio: Email: wly_lzjt@163.com(L. Wang)
  • Corresponding author: Email: lijiemei81@126.com(J. Li) 
  • Fund Project: The authors were supported by National Natural Science Foundation of China (12071302, 11801243) and the key project of the Gansu Province Natural Science Foundation of China (23JRRA861)
  • The radial solutions of the k-Hessian system with augmented terms are considered. We not only prove the existence of entire bounded radial solutions, but also provide a necessary and sufficient condition for the existence of blow-up radial solutions under some suitable growth conditions of nonlinearity by using the monotone iterative method. Two concrete examples are presented to show an application of the main results.

    MSC: 37G05, 37G10, 34K18
  • 加载中
  • [1] J. Bao, H. Li and L. Zhang, Monge-Ampère equation on exterior domains, Calc. Var. Partial. Dif., 2013, 52, 39-63.

    Google Scholar

    [2] L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second order elliptic equations, Ⅲ: Functions of the eigenvalues of the Hessian, Acta. Math-Djursholm, 1985, 155(1), 261-301.

    Google Scholar

    [3] D. Covei, Solutions with radial symmetry for a semilinear elliptic system with weights, Appl. Math. Lett., 2018(76): 187-194.

    Google Scholar

    [4] D. Covei, A necessary and a sufficient condition for the existence of the positive radial solutions to Hessian equations and systems with weights, Acta Math. Sci., 2017, 37(1), 47-57. doi: 10.1016/S0252-9602(16)30114-X

    CrossRef Google Scholar

    [5] J. Cui, Existence and nonexistence of entire k-convex radial solutions to Hessian type system, Adv. Differ. Equ. Ny., 2021, 2021(1), 1-9. doi: 10.1186/s13662-020-03162-2

    CrossRef Google Scholar

    [6] T. Delcroix and J. Hultgren, Coupled complex Monge-Ampère equations on Fano horosymmetric manifolds, J. Math. Pure. Appl., 2021, 153, 281-315. doi: 10.1016/j.matpur.2020.12.002

    CrossRef Google Scholar

    [7] Y. Du and Q. Huang, Blow-up solutions for a class of semilinear elliptic and parabolic equations, Siam J. Math. Anal., 1999, 31(1), 1-18. doi: 10.1137/S0036141099352844

    CrossRef Google Scholar

    [8] M. Feng, New results of coupled system of k-Hessian equations, Appl. Math. Lett., 2019, 94, 196-203. doi: 10.1016/j.aml.2019.03.008

    CrossRef Google Scholar

    [9] J. Garcšªa-Meliš¢n, Uniqueness of positive solutions for a boundary blow-up problem, J. Math. Anal. Appl., 2009, 360(2), 530-536. doi: 10.1016/j.jmaa.2009.06.077

    CrossRef Google Scholar

    [10] J. Hultgren, M. Jonsson, E. Mazzon and N. McCleerey, Tropical and non-Archimedean Monge-Ampère equations for a class of Calabi-Yau hypersurfaces, Adv. Math., 2024, 439, 109494. doi: 10.1016/j.aim.2024.109494

    CrossRef Google Scholar

    [11] J. Ji, F. Jiang and M. Li, Entire subsolutions of a kind of k-Hessian type equations with gradient terms, Commun. Pur. Appl. Anal., 2023, 22, 946-969. doi: 10.3934/cpaa.2023015

    CrossRef Google Scholar

    [12] X. Ji and J. Bao, Necessary and sufficient conditions on solvability for Hessian inequalities, P. Am. Math. Soc., 2010, 138(1), 175-188. doi: 10.1090/S0002-9939-09-10032-1

    CrossRef Google Scholar

    [13] A. Lair and A. Mohammed, Large solutions to semilinear elliptic systems with variable exponents, Math. Anal. Appl., 2014, 420(2), 1478-1499. doi: 10.1016/j.jmaa.2014.06.068

    CrossRef Google Scholar

    [14] J. Lopez-Gomez, Optimal uniqueness theorems and exact blow-up rates of large solutions, J. Differential Equations, 2005, 224(2), 385-439.

    Google Scholar

    [15] J. Lopez-Gomez, Large solutions, metasolutions, and asymptotic behaviour of the regular positive solutions of sublinear parabolic problems, Electron. J. Differential Equations, 2000, 5, 135-171.

    Google Scholar

    [16] J. Marcos, S. Evelina and S. Esteban, Singular solutions to k-Hessian equations with fast-growing nonlinearities, Nonlinear Anal., 2022, 222, 113000. doi: 10.1016/j.na.2022.113000

    CrossRef Google Scholar

    [17] M. Marcus and L. Véron, Existence and uniqueness results for large solutions of general nonlinear elliptic equations, J. Evol. Equ., 2004, 3(4), 637-652.

    Google Scholar

    [18] M. Marcus and L. Véron, Uniqueness and asymptotic behavior of solutions with boundary blow-up for a class of nonlinear elliptic equations, Annales de l'Institut Henri Poincaré, Analyse non linéaire, 1997, 14(2), 237-274. doi: 10.1016/s0294-1449(97)80146-1

    CrossRef Google Scholar

    [19] H. Wang, Convex solutions of systems arising from Monge-Ampère equations, Electron. J. Qual. Theo., 2009, 2009(26), 1-8.

    Google Scholar

    [20] X. Wang, The k-Hessian Equation, Lect. Notes, Math., 2009, 1977, 177-252.

    Google Scholar

    [21] Z. Yang and Z. Bai, Existence results for the k-Hessian type system with the gradients via $\mathbb{R}.n_+$-monotone matrices, Nonlinear Anal., 2024, 240, 113457. doi: 10.1016/j.na.2023.113457

    CrossRef $\mathbb{R}.n_+$-monotone matrices" target="_blank">Google Scholar

    [22] D. Zha, W. Peng and Y. Qin, Global existence and asymptotic behavior for some multidimensional quasilinear hyperbolic systems, J. Differential Equations, 2020, 269(11), 9297-9309. doi: 10.1016/j.jde.2020.06.051

    CrossRef Google Scholar

    [23] L. Zhang, Y. Zhang, G. Wang and B. Ahmad, The multiplicity of radial k-convex solutions for an augmented Hessian equation, J. Math. Anal. Appl., 2023, 527(1), 127408. doi: 10.1016/j.jmaa.2023.127408

    CrossRef Google Scholar

    [24] X. Zhang and M. Feng, Boundary blow-up solutions to singular k-Hessian equations with gradient terms: Sufficient and necessary conditions and asymptotic behavior, J. Differential Equations, 2023, 375, 475-513. doi: 10.1016/j.jde.2023.08.022

    CrossRef Google Scholar

    [25] X. Zhang and M. Feng, Blow-up solutions to the Monge-Ampère equation with a gradient term: Sharp conditions for the existence and asymptotic estimates, Calc. Var. Partial. Dif., 2022, 61(6), 1-33.

    Google Scholar

    [26] X. Zhang and M. Feng, Boundary blow-up solutions to the Monge-Ampère equation: Sharp conditions and asymptotic behavior, Nonlinear Anal., 2019, 9, 729-744. doi: 10.1515/anona-2020-0023

    CrossRef Google Scholar

    [27] X. Zhang and M. Feng, Boundary blow-up solutions to the k-Hessian equation with a weakly superlinear nonlinearity, J. Math. Anal. Appl., 2018, 464(1), 456-472. doi: 10.1016/j.jmaa.2018.04.014

    CrossRef Google Scholar

    [28] X. Zhang and M. Feng, Boundary blow-up solutions to the k-Hessian equation with singular weights, Nonlinear Anal., 2018, 167, 51-66. doi: 10.1016/j.na.2017.11.001

    CrossRef Google Scholar

    [29] X. Zhang, L. Liu, Y. Wu and Y. Cui, The existence and nonexistence of entire large solutions for a quasilinear Schrodinger elliptic system by dual approach, J. Math. Anal. Appl., 2018, 464(2), 1089-1106. doi: 10.1016/j.jmaa.2018.04.040

    CrossRef Google Scholar

    [30] X. Zhang and Y. Yang, Necessary and sufficient conditions for the existence of entire subsolutions to p-k-Hessian equations, Nonlinear Anal., 2023, 233, 113299. doi: 10.1016/j.na.2023.113299

    CrossRef Google Scholar

    [31] Z. Zhang, Optimal global and boundary asymptotic behavior of large solutions to the Monge-Ampère equation, J. Funct. Anal., 2020, 278(12), 108512. doi: 10.1016/j.jfa.2020.108512

    CrossRef Google Scholar

    [32] Z. Zhang, Large solutions to the Monge-Ampère equations with nonlinear gradient terms: Existence and boundary behavior, J. Differential Equations., 2018, 264(1), 263-296. doi: 10.1016/j.jde.2017.09.010

    CrossRef Google Scholar

    [33] Z. Zhang and K. Wang, Existence and nonexistence of solutions for a class of Monge-Ampère equations, J. Differential Equations, 2009, 246, 2849-2875. doi: 10.1016/j.jde.2009.01.004

    CrossRef Google Scholar

    [34] Z. Zhang and S. Zhou, Existence of entire positive k-convex radial solutions to Hessian equations and systems with weights, Appl. Math. Lett., 2015, 50, 48-55. doi: 10.1016/j.aml.2015.05.018

    CrossRef Google Scholar

Article Metrics

Article views(649) PDF downloads(247) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint