2024 Volume 14 Issue 6
Article Contents

Ying Zhang, Ziqiong Chen, Pengzhan Huang. A FINITE ELEMENT ITERATIVE ALGORITHM OF THE STEADY-STATE FLUID-FLUID INTERACTION PROBLEM[J]. Journal of Applied Analysis & Computation, 2024, 14(6): 3214-3226. doi: 10.11948/20230495
Citation: Ying Zhang, Ziqiong Chen, Pengzhan Huang. A FINITE ELEMENT ITERATIVE ALGORITHM OF THE STEADY-STATE FLUID-FLUID INTERACTION PROBLEM[J]. Journal of Applied Analysis & Computation, 2024, 14(6): 3214-3226. doi: 10.11948/20230495

A FINITE ELEMENT ITERATIVE ALGORITHM OF THE STEADY-STATE FLUID-FLUID INTERACTION PROBLEM

  • Author Bio: Email: zhangying@xju.edu.cn(Y. Zhang); Email: chenziqiong@xju.edu.cn(Z. Chen)
  • Corresponding author: Email: hpzh@xju.edu.cn(P. Huang)
  • Fund Project: The authors were supported by the Natural Science Foundation of China (grant number 12361077), Natural Science Foundation of Xinjiang Uygur Autonomous Region (grant number 2023D14014) and Undergraduate Innovative Training Plan Program of China (grant number 202210755081)
  • In this work, we propose a finite element iterative algorithm to solve the stationary fluid-fluid interaction model. First, we give the finite element discretization for the considered equations. Due that the finite element discretization system is nonlinear, then we design an iterative algorithm for solving the nonlinear equations, where error correction strategy is used to control iterative error at each iteration. Finally, some numerical tests are carried out to demonstrate theoretical results of the proposed algorithm.

    MSC: 65N30
  • 加载中
  • [1] M. Aggul, A grad-div stabilized penalty projection algorithm for fluid-fluid interaction, Applied Mathematics and Computation, 2022, 414, 126670. doi: 10.1016/j.amc.2021.126670

    CrossRef Google Scholar

    [2] M. Aggul, J. M. Connors, D. Erkmen and A. E. Labovsky, A defect-deferred correction method for fluid-fluid interaction, SIAM J., 2018, 56(4), 2484–2512.

    Google Scholar

    [3] M. Aggul, F. G. Eroglu, S. Kaya and A. E. Labovsky, A projection based variational multiscale method for a fluid-fluid interaction problem, Comput. Methods Appl. Mech. Engrg., 2020, 365, 112957. doi: 10.1016/j.cma.2020.112957

    CrossRef Google Scholar

    [4] M. Aggul and S. Kaya, Defect-deferred correction method based on a subgrid artificial viscosity model for fluid-fluid interaction, Appl. Numer. Math., 2021, 160, 178–191. doi: 10.1016/j.apnum.2020.10.004

    CrossRef Google Scholar

    [5] C. Bernardi, T. C. Rebollo, R. Lewandowski and F. Murat, A model for two coupled turbulent fluids part Ⅱ: Numerical analysis of a spectral discretization, SIAM J. Numer. Anal., 2003, 40(6), 2368–2394.

    Google Scholar

    [6] C. Bernardi, T. C. Rebollo, M. G. Mármol, R. Lewandowski and F. Murat, A model for two coupled turbulent fluids part Ⅲ: Numerical approximation by finite elements, Numer. Math., 2004, 98(1), 33–66. doi: 10.1007/s00211-003-0490-9

    CrossRef Google Scholar

    [7] D. Bresch and J. Koko, Operator-splitting and Lagrange multiplier domain decomposition methods for numerical simulation of two coupled Navier-Stokes fluids, Int. J. Appl. Math. Comput. Sci., 2006, 16(4), 419–429.

    Google Scholar

    [8] Z. Chen, Finite Element Methods and their Applications, Springer, New York, 2005.

    Google Scholar

    [9] J. M. Connors and J. S. Howell, A fluid-fluid interaction method using decoupled subproblems and differing time steps, Numer. Meth. Part. Differ. Equs., 2012, 28(4), 1283–1308. doi: 10.1002/num.20681

    CrossRef Google Scholar

    [10] J. M. Connors, J. S. Howell and W. J. Layton, Decoupled time stepping methods for fluid-fluid interaction, SIAM J. Numer. Anal., 2012, 50(3), 1297–1319. doi: 10.1137/090773362

    CrossRef Google Scholar

    [11] Y. N. He and A. W. Wang, A simplified two-level method for the steady Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 2008, 197(17–18), 1568–1576.

    Google Scholar

    [12] P. Z. Huang, Y. N. He and X. L. Feng, Second order time-space iterative method for the stationary Navier-Stokes equations, Appl. Math. Lett., 2016, 59, 79–86. doi: 10.1016/j.aml.2016.02.018

    CrossRef Google Scholar

    [13] P. Z. Huang, W. Q. Li and Z. Y. Si, Several iterative schemes for the stationary natural convection equations at different Rayleigh numbers, Numer. Meth. Part. Differ. Equs., 2015, 31(3), 761–776. doi: 10.1002/num.21915

    CrossRef Google Scholar

    [14] P. Z. Huang, T. Zhang and Z. Y. Si, A stabilized Oseen iterative finite element method for stationary conduction-convection equations, Math. Meth. Appl. Sci., 2012, 35(1), 103–118. doi: 10.1002/mma.1541

    CrossRef Google Scholar

    [15] S. Hussain, M. A. A. Mahbub and F. Shi, A stabilized finite element method for the Stokes-Stokes coupling interface problem, J. Math. Fluid Mech., 2022, 24(3), 63. doi: 10.1007/s00021-022-00694-3

    CrossRef Google Scholar

    [16] J. Koko, Uzawa conjugate gradient domain decomposition methods for coupled Stokes flows, J. Sci. Comput., 2006, 26(2), 195–216. doi: 10.1007/s10915-005-4933-6

    CrossRef Google Scholar

    [17] J. Li, P. Z. Huang, J. Su and Z. X. Chen, A linear, stabilized, non-spatial iterative, partitioned time stepping method for the nonlinear Navier-Stokes/Navier-Stokes interaction model, Bound. Value Probl., 2019, 2019(1), 1–19. doi: 10.1186/s13661-018-1115-7

    CrossRef Google Scholar

    [18] J. Li, P. Z. Huang, C. Zhang and G. H. Guo, A linear, decoupled fractional time-stepping method for the nonlinear fluid-fluid interaction, Numer. Methods Part. Differ. Equs., 2019, 35(5), 1873–1889. doi: 10.1002/num.22382

    CrossRef Google Scholar

    [19] W. Li and P. Z. Huang, A two-step decoupled finite element algorithm for a nonlinear fluid-fluid interaction problem, Univ. Politeh. Buchar. Sci. Bull. Ser. A Appl. Math. Phys., 2019, 81(4), 107–118.

    Google Scholar

    [20] W. Li and P. Z. Huang, A decoupled algorithm for fluid-fluid interaction at small viscosity, Filomat, 2023, 37(19), 6365–6372. doi: 10.2298/FIL2319365L

    CrossRef Google Scholar

    [21] W. Li and P. Z. Huang, On a two-order temporal scheme for Navier-Stokes/Navier-Stokes equations, Appl. Numer. Math., 2023, 194, 1–17. doi: 10.1016/j.apnum.2023.08.004

    CrossRef Google Scholar

    [22] W. Li, P. Z. Huang, and Y. N. He, Grad-div stabilized finite element schemes for the fluid-fluid interaction model, Commun. Comput. Phys., 2021, 30(2), 536–566. doi: 10.4208/cicp.OA-2020-0123

    CrossRef Google Scholar

    [23] W. Li, P. Z. Huang and Y. N. He, An unconditionally energy stable finite element scheme for a nonlinear fluid-fluid interaction model, IMA J. Numer. Anal., 2024, 44(1), 157–191. doi: 10.1093/imanum/drac086

    CrossRef Google Scholar

    [24] W. Li, P. Z. Huang and Y. N. He, Second order unconditionally stable and convergent linearized scheme for a fluid-fluid interaction model, J. Comput. Math., 2023, 41(1), 72–93.

    Google Scholar

    [25] W. Y. Li and Y. X. Xu, Schwarz domain decomposition methods for the fluid-fluid system with friction-type interface conditions, Appl. Numer. Math., 2021, 166, 114–126. doi: 10.1016/j.apnum.2021.04.005

    CrossRef Google Scholar

    [26] J. L. Lions, R. Temam and S. Wang, Numerical analysis of the coupled atmosphere-ocean models (CAO Ⅱ), Comput. Mech. Adv., 1993, 1(1), 55–119.

    Google Scholar

    [27] L. Z. Qian, J. R. Chen and X. L. Feng, Local projection stabilized and characteristic decoupled scheme for the fluid-fluid interaction problems, Numer. Meth. Part. Differ. Equs., 2017, 33(3), 704–723. doi: 10.1002/num.22116

    CrossRef Google Scholar

    [28] L. Z. Qian, X. L. Feng and Y. N. He, Crank-Nicolson leap-frog time stepping decoupled scheme for the fluid-fluid iteraction problems, J. Sci. Comput., 2020, 84(1), 4. doi: 10.1007/s10915-020-01254-5

    CrossRef Google Scholar

    [29] T. C. Rebollo, S. D. Pino and D. Yakoubi, An iterative procedure to solve a coupled two-fluids turbulence model, ESAIM: Math. Model. Numer. Anal., 2010, 44(4), 693–713. doi: 10.1051/m2an/2010015

    CrossRef Google Scholar

    [30] R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, North-Holland, Amsterdam, 1984.

    Google Scholar

    [31] K. Wang and Y. S. Wong, Error correction method for Navier-Stokes equations at high Reynolds numbers, J. Comput. Phys., 2013, 255, 245–265. doi: 10.1016/j.jcp.2013.07.042

    CrossRef Google Scholar

    [32] L. Wang, J. Li and P. Z. Huang, An efficient iterative algorithm for the natural convection equations based on finite element method, Int. J. Numer. Meth. Heat Fluid Flow, 2018, 28(3), 584–605. doi: 10.1108/HFF-03-2017-0101

    CrossRef Google Scholar

    [33] Y. H. Zhang, Y. R. Hou and L. Shan, Stability and convergence analysis of a decoupled algorithm for a fluid-fluid interaction problem, SIAM J. Numer. Anal., 2016, 54(5), 2833–2867. doi: 10.1137/15M1047891

    CrossRef Google Scholar

    [34] Y. H. Zhang, Y. R. Hou and L. Shan, Error estimates of a decoupled algorithm for a fluid-fluid interaction problem, J. Comput. Appl. Math., 2018, 333, 266–291. doi: 10.1016/j.cam.2017.10.039

    CrossRef Google Scholar

    [35] Y. H. Zhang, L. Shan and Y. R. Hou, New approach to prove the stability of a decoupled algorithm for a fluid-fluid interaction problem, J. Comput. Appl. Math., 2020, 371, 112695. doi: 10.1016/j.cam.2019.112695

    CrossRef Google Scholar

    [36] Y. H. Zhang, H. B. Zheng, Y. R. Hou and L. Shan, Optimal error estimates of both coupled and two-grid decoupled methods for a mixed Stokes-Stokes model, Appl. Numer. Math., 2018, 133, 116–129. doi: 10.1016/j.apnum.2018.01.022

    CrossRef Google Scholar

Figures(2)  /  Tables(2)

Article Metrics

Article views(551) PDF downloads(212) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint