2024 Volume 14 Issue 6
Article Contents

Lu Xu, Wen Si, Mengmeng Wu. THE EXISTENCE OF RESPONSE TORI FOR HAMILTONIAN WITH NORMAL DEGENERACY[J]. Journal of Applied Analysis & Computation, 2024, 14(6): 3227-3259. doi: 10.11948/20230503
Citation: Lu Xu, Wen Si, Mengmeng Wu. THE EXISTENCE OF RESPONSE TORI FOR HAMILTONIAN WITH NORMAL DEGENERACY[J]. Journal of Applied Analysis & Computation, 2024, 14(6): 3227-3259. doi: 10.11948/20230503

THE EXISTENCE OF RESPONSE TORI FOR HAMILTONIAN WITH NORMAL DEGENERACY

  • Author Bio: Email: xulu@jlu.edu.cn(L. Xu); Email: a2833481657@163.com(M. Wu)
  • Corresponding author: Email: siwenmath@sdu.edu.cn(W. Si) 
  • Fund Project: The first author was partially supported by National Natural Science Foundation of China (Grant No. 12271204) and the Department project of Science and Technology of Jilin Province (Grant No. 20200201265JC). The second author was partially supported by the National Natural Science Foundation of China (Grant No. 12001315, 11971261, 11571201, 12071255) and Shandong Provincial Natural Science Foundation, China (Grant No. ZR2020MA015)
  • In this paper, we prove the existence of response tori for a general Hamiltonian with normal degeneracy which will be shown as (1.1). When the perturbation is independent of action varible $y$, it can be seen as the energy function of several quasi-periodically forced oscillator equations (1.2). Most of the previous results focus on a single oscillator equation and prove the existence of response solutions under certain non-degenerate assumptions. In the present paper, we will consider high dimensional system (1.2) coupled by oscillator equations in different degenerate types. We will prove that the response solutions still exist around perturbed equilibria, which reveals the mechanics of the existence of response solution for a system coupled by degenerate nonlinear oscillator equations. For the sake of generality, we will actually consider a general Hamiltonian normal form and prove the persistence of invariant tori with fixed Diophantine frequency $\omega$ by the methods of finding relative equilibria, improving the order of perturbations, KAM iterations and measure estimates. The result can be applied to prove the existence of response solutions of the above system (1.2).

    MSC: 37J40, 70H08
  • 加载中
  • [1] V. I. Arnold, Small denominators and problems of stability of motion in classical mechanics, Usp. Math. Nauk., 1963, 18(6), 91–192.

    Google Scholar

    [2] H. Cheng, R. de la Llave and F. Wang, Response solutions to the quasi-periodically forced systems with degenerate equilibrium: A simple proof of a result of W. Si and J. Si and extensions, Nonlinearity, 2021, 34, 372–389. doi: 10.1088/1361-6544/abbf33

    CrossRef Google Scholar

    [3] H. Cheng, W. Si and J. Si, Whiskered tori for forced beam equations with multi-dimensional Liouvillean, J. Dyn. Differ. Equ., 2020, 32, 705–739. doi: 10.1007/s10884-019-09754-1

    CrossRef Google Scholar

    [4] L. Chierchia and G. Gallavotti, Drift and diffusion phase space, Ann. Inst. H. Poincaré Phy. Th., 1994, 69, 1–144.

    Google Scholar

    [5] L. Corsi and G. Gentile, Resonant motions in the presence of degeneracies for quasi-periodically perturbed systems, Ergod. Theor. Dyn. Syst., 2015, 35, 1079–1140. doi: 10.1017/etds.2013.92

    CrossRef Google Scholar

    [6] L. Corsi and G. Gentile, Resonant tori of arbitrary codimension for quasi-periodically forced systems, Nonlinear Differ. Equ. Appl., 2017, 24, Artical 3. DOI: 10.1007/s00030-016-0425-7.

    CrossRef Google Scholar

    [7] J. Du, Arnold-type therom about lower-dimensional invariant tori in generalized Hamiltonian systems, J. Appl. Anal. Comput., 2022, 12(6), 2621–2639.

    Google Scholar

    [8] J. Du, L. Xu and Y. Li, An infinite dimensional KAM theorem with normal degeneracy, Nonlinearity, 2024, 37(6). DOI: 10.1088/1361-6544/ad45a1.

    CrossRef Google Scholar

    [9] M. Friedman, Quasi-periodic solutions of nonlinear ordinary differential equations with small damping, Bull. Amer. Math. Soc., 1967, 73, 460–464. doi: 10.1090/S0002-9904-1967-11783-X

    CrossRef Google Scholar

    [10] M. Gao, Quasi-periodic solusitons for 1D nonlinear wave equation, J. Appl. Anal. Comput., 2023, 13(3), 1505–1534.

    Google Scholar

    [11] G. Gentile, Degenearte lower-dimensional tori under the Bryuno condition, Ergod. Th. Dynam. Sys., 2007, 27, 427–457. doi: 10.1017/S0143385706000757

    CrossRef Google Scholar

    [12] G. Gentile, Quasi-periodic motions in strongly dissipative forced systems, Ergod. Th. Dynam. Sys., 2010, 30(5), 1457–1469. doi: 10.1017/S0143385709000583

    CrossRef Google Scholar

    [13] G. Gentile, Construction of quasi-periodic responsive solutions in forced strongly dissipative systems, Forum Math., 2012, 24(4), 791–808. doi: 10.1515/form.2011.084

    CrossRef Google Scholar

    [14] N. S. Gopal and J. M. Jonnalagadda, Existence and non-existence of positive solutions for a discrete fractional boundary value problem, Journal of Nonlinear Modeling and Analysis, 2023, 5(3), 432–445.

    Google Scholar

    [15] X. Guan and W. Si, Almost-periodic bifurcations for 2-dimensional degenerate Hamiltonian vector fields, J. Appl. Anal. Comput., 2023, 13(6), 3054–3073.

    Google Scholar

    [16] Y. C. Han and Y. Li and Y. Yi, Degenerate lower-dimensional tori in Hamiltonian systems, J. Diff. Eqs., 2006, 227(2), 670–691. doi: 10.1016/j.jde.2006.02.006

    CrossRef Google Scholar

    [17] Y. Li and Y. Yi, Persistence of lower dimensional tori of general types in Hamiltonian systems, Trans. Amer. Math. Soc., 2005, 357(4), 1565–1600.

    Google Scholar

    [18] Z. Lou and J. Geng, Quasi-periodic response solutions in forced reversible systems with Liouvillean frequencies, J. Diff. Eqs., 2017, 263(7), 3894–3927. doi: 10.1016/j.jde.2017.05.007

    CrossRef Google Scholar

    [19] J. Moser, Combination tones for Duffing's equation, Comm. Pure Appl. Math., 1965, 18(1–2), 167–181.

    Google Scholar

    [20] W. Qian, KAM theorem and iso-energetic KAM theorem on Poission manifold, J. Appl. Anal. Comput., 2023, 13(2), 1088–1107.

    Google Scholar

    [21] W. Si and Y. Yi, Completely degenerate responsive tori in Hamiltonian systems, Nonlinerity, 2020, 33(11), 6072–6098. doi: 10.1088/1361-6544/aba093

    CrossRef Google Scholar

    [22] W. Si and Y. Yi, Response solutions in degenerate oscillators under degenerate perturbations, Ann. H. Poincaré, 2022, 23(1), 333–360. doi: 10.1007/s00023-021-01093-6

    CrossRef Google Scholar

    [23] J. Wang, J. You and Q. Zhou, Response solutions for quasi-periodically forced harmonic oscillators, Trans. Amer. Math. Soc., 2017, 369(6), 4251–4274.

    Google Scholar

    [24] J. Xu, J. You and Q. Qiu, Invariant tori for nearly integrable Hamiltonian systems with degeneracy, Math. Z., 1997, 226, 375–387. doi: 10.1007/PL00004344

    CrossRef Google Scholar

    [25] L. Xu, Y. Li and Y. Yi, Lower dimensional tori in multi-scale, nearly integrabel Hamiltonian systems, Ann. H. Poincaré, 2017, 18(1), 53–83. doi: 10.1007/s00023-016-0516-3

    CrossRef Google Scholar

    [26] L. Xu, Y. Li and Y. Yi, Poincaré-Treshchev mechanism in multi-scale, nearly integrable Hamiltonian systems, J. Nonlinear Sci., 2018, 28(1), 337–369. doi: 10.1007/s00332-017-9410-5

    CrossRef Google Scholar

    [27] L. Xu and Y. Yi, Lower dimension tori of general types in multi-scale Hamiltonian systems, Nonlinearity, 2019, 32(6), 2226–2245. doi: 10.1088/1361-6544/ab0908

    CrossRef Google Scholar

    [28] X. Xu, W. Si and J. Si, Stoker's problem for quasi-periodically forced reversible systems with multidimensiona Lvillean frequency, SIAM J. Appl. Dyn. Syst., 2020, 19(4), 2286–2321. doi: 10.1137/19M1270033

    CrossRef Google Scholar

    [29] Y. Yi, A generalized integral manifold theorem, J. Diff. Eqs., 1993, 102(1), 153–187. doi: 10.1006/jdeq.1993.1026

    CrossRef Google Scholar

    [30] J. You, A KAM theorem for hyperbolic-type degenerate lower dimensional tori in Hamiltonian systems, Commun. Math. Phys., 1998, 192, 145–168. doi: 10.1007/s002200050294

    CrossRef Google Scholar

    [31] Z. Yuan and S. Liu, Existence and multiplicity of solutions for a biharmonic kirchhoff equation in ${\mathbb R}^{5*}$, Journal of Nonlinear Modeling and Analysis, 2024, 6(1), 71–87.

    ${\mathbb R}^{5*}$" target="_blank">Google Scholar

Article Metrics

Article views(692) PDF downloads(208) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint