Citation: | Lu Xu, Wen Si, Mengmeng Wu. THE EXISTENCE OF RESPONSE TORI FOR HAMILTONIAN WITH NORMAL DEGENERACY[J]. Journal of Applied Analysis & Computation, 2024, 14(6): 3227-3259. doi: 10.11948/20230503 |
In this paper, we prove the existence of response tori for a general Hamiltonian with normal degeneracy which will be shown as (1.1). When the perturbation is independent of action varible $y$, it can be seen as the energy function of several quasi-periodically forced oscillator equations (1.2). Most of the previous results focus on a single oscillator equation and prove the existence of response solutions under certain non-degenerate assumptions. In the present paper, we will consider high dimensional system (1.2) coupled by oscillator equations in different degenerate types. We will prove that the response solutions still exist around perturbed equilibria, which reveals the mechanics of the existence of response solution for a system coupled by degenerate nonlinear oscillator equations. For the sake of generality, we will actually consider a general Hamiltonian normal form and prove the persistence of invariant tori with fixed Diophantine frequency $\omega$ by the methods of finding relative equilibria, improving the order of perturbations, KAM iterations and measure estimates. The result can be applied to prove the existence of response solutions of the above system (1.2).
[1] | V. I. Arnold, Small denominators and problems of stability of motion in classical mechanics, Usp. Math. Nauk., 1963, 18(6), 91–192. |
[2] | H. Cheng, R. de la Llave and F. Wang, Response solutions to the quasi-periodically forced systems with degenerate equilibrium: A simple proof of a result of W. Si and J. Si and extensions, Nonlinearity, 2021, 34, 372–389. doi: 10.1088/1361-6544/abbf33 |
[3] | H. Cheng, W. Si and J. Si, Whiskered tori for forced beam equations with multi-dimensional Liouvillean, J. Dyn. Differ. Equ., 2020, 32, 705–739. doi: 10.1007/s10884-019-09754-1 |
[4] | L. Chierchia and G. Gallavotti, Drift and diffusion phase space, Ann. Inst. H. Poincaré Phy. Th., 1994, 69, 1–144. |
[5] | L. Corsi and G. Gentile, Resonant motions in the presence of degeneracies for quasi-periodically perturbed systems, Ergod. Theor. Dyn. Syst., 2015, 35, 1079–1140. doi: 10.1017/etds.2013.92 |
[6] | L. Corsi and G. Gentile, Resonant tori of arbitrary codimension for quasi-periodically forced systems, Nonlinear Differ. Equ. Appl., 2017, 24, Artical 3. DOI: 10.1007/s00030-016-0425-7. |
[7] | J. Du, Arnold-type therom about lower-dimensional invariant tori in generalized Hamiltonian systems, J. Appl. Anal. Comput., 2022, 12(6), 2621–2639. |
[8] | J. Du, L. Xu and Y. Li, An infinite dimensional KAM theorem with normal degeneracy, Nonlinearity, 2024, 37(6). DOI: 10.1088/1361-6544/ad45a1. |
[9] | M. Friedman, Quasi-periodic solutions of nonlinear ordinary differential equations with small damping, Bull. Amer. Math. Soc., 1967, 73, 460–464. doi: 10.1090/S0002-9904-1967-11783-X |
[10] | M. Gao, Quasi-periodic solusitons for 1D nonlinear wave equation, J. Appl. Anal. Comput., 2023, 13(3), 1505–1534. |
[11] | G. Gentile, Degenearte lower-dimensional tori under the Bryuno condition, Ergod. Th. Dynam. Sys., 2007, 27, 427–457. doi: 10.1017/S0143385706000757 |
[12] | G. Gentile, Quasi-periodic motions in strongly dissipative forced systems, Ergod. Th. Dynam. Sys., 2010, 30(5), 1457–1469. doi: 10.1017/S0143385709000583 |
[13] | G. Gentile, Construction of quasi-periodic responsive solutions in forced strongly dissipative systems, Forum Math., 2012, 24(4), 791–808. doi: 10.1515/form.2011.084 |
[14] | N. S. Gopal and J. M. Jonnalagadda, Existence and non-existence of positive solutions for a discrete fractional boundary value problem, Journal of Nonlinear Modeling and Analysis, 2023, 5(3), 432–445. |
[15] | X. Guan and W. Si, Almost-periodic bifurcations for 2-dimensional degenerate Hamiltonian vector fields, J. Appl. Anal. Comput., 2023, 13(6), 3054–3073. |
[16] | Y. C. Han and Y. Li and Y. Yi, Degenerate lower-dimensional tori in Hamiltonian systems, J. Diff. Eqs., 2006, 227(2), 670–691. doi: 10.1016/j.jde.2006.02.006 |
[17] | Y. Li and Y. Yi, Persistence of lower dimensional tori of general types in Hamiltonian systems, Trans. Amer. Math. Soc., 2005, 357(4), 1565–1600. |
[18] | Z. Lou and J. Geng, Quasi-periodic response solutions in forced reversible systems with Liouvillean frequencies, J. Diff. Eqs., 2017, 263(7), 3894–3927. doi: 10.1016/j.jde.2017.05.007 |
[19] | J. Moser, Combination tones for Duffing's equation, Comm. Pure Appl. Math., 1965, 18(1–2), 167–181. |
[20] | W. Qian, KAM theorem and iso-energetic KAM theorem on Poission manifold, J. Appl. Anal. Comput., 2023, 13(2), 1088–1107. |
[21] | W. Si and Y. Yi, Completely degenerate responsive tori in Hamiltonian systems, Nonlinerity, 2020, 33(11), 6072–6098. doi: 10.1088/1361-6544/aba093 |
[22] | W. Si and Y. Yi, Response solutions in degenerate oscillators under degenerate perturbations, Ann. H. Poincaré, 2022, 23(1), 333–360. doi: 10.1007/s00023-021-01093-6 |
[23] | J. Wang, J. You and Q. Zhou, Response solutions for quasi-periodically forced harmonic oscillators, Trans. Amer. Math. Soc., 2017, 369(6), 4251–4274. |
[24] | J. Xu, J. You and Q. Qiu, Invariant tori for nearly integrable Hamiltonian systems with degeneracy, Math. Z., 1997, 226, 375–387. doi: 10.1007/PL00004344 |
[25] | L. Xu, Y. Li and Y. Yi, Lower dimensional tori in multi-scale, nearly integrabel Hamiltonian systems, Ann. H. Poincaré, 2017, 18(1), 53–83. doi: 10.1007/s00023-016-0516-3 |
[26] | L. Xu, Y. Li and Y. Yi, Poincaré-Treshchev mechanism in multi-scale, nearly integrable Hamiltonian systems, J. Nonlinear Sci., 2018, 28(1), 337–369. doi: 10.1007/s00332-017-9410-5 |
[27] | L. Xu and Y. Yi, Lower dimension tori of general types in multi-scale Hamiltonian systems, Nonlinearity, 2019, 32(6), 2226–2245. doi: 10.1088/1361-6544/ab0908 |
[28] | X. Xu, W. Si and J. Si, Stoker's problem for quasi-periodically forced reversible systems with multidimensiona Lvillean frequency, SIAM J. Appl. Dyn. Syst., 2020, 19(4), 2286–2321. doi: 10.1137/19M1270033 |
[29] | Y. Yi, A generalized integral manifold theorem, J. Diff. Eqs., 1993, 102(1), 153–187. doi: 10.1006/jdeq.1993.1026 |
[30] | J. You, A KAM theorem for hyperbolic-type degenerate lower dimensional tori in Hamiltonian systems, Commun. Math. Phys., 1998, 192, 145–168. doi: 10.1007/s002200050294 |
[31] | Z. Yuan and S. Liu, Existence and multiplicity of solutions for a biharmonic kirchhoff equation in ${\mathbb R}^{5*}$, Journal of Nonlinear Modeling and Analysis, 2024, 6(1), 71–87. |