2024 Volume 14 Issue 6
Article Contents

Saud Fahad Aldosary, I. Uddin, S. Mujahid. RELATIONAL GERAGHTY CONTRACTIONS WITH AN APPLICATION TO A SINGULAR FRACTIONAL BOUNDARY VALUE PROBLEM[J]. Journal of Applied Analysis & Computation, 2024, 14(6): 3480-3495. doi: 10.11948/20240056
Citation: Saud Fahad Aldosary, I. Uddin, S. Mujahid. RELATIONAL GERAGHTY CONTRACTIONS WITH AN APPLICATION TO A SINGULAR FRACTIONAL BOUNDARY VALUE PROBLEM[J]. Journal of Applied Analysis & Computation, 2024, 14(6): 3480-3495. doi: 10.11948/20240056

RELATIONAL GERAGHTY CONTRACTIONS WITH AN APPLICATION TO A SINGULAR FRACTIONAL BOUNDARY VALUE PROBLEM

  • In this article, we present some results on fixed points employing relational Geraghty contractions in the setting of metric space endued with a class of transitive binary relations. Our results complement, sharpen and improve several fixed point results of literature. By means of our findings, we discuss an existence and uniqueness theorem regarding the positive solutions of certain boundary value problems associated with a singular fractional differential equations.

    MSC: 47H10, 54H25, 34A08, 54E35, 06A75
  • 加载中
  • [1] A. Alam, M. Arif and M. Imdad, Metrical fixed point theorems via locally finitely $T$-transitive binary relations under certain control functions, Miskolc Mathematical Notes, 2019, 20(1), 59–73. doi: 10.18514/MMN.2019.2468

    CrossRef $T$-transitive binary relations under certain control functions" target="_blank">Google Scholar

    [2] A. Alam, R. George and M. Imdad, Refinements to relation-theoretic contraction principle, Axioms, 2022, 11(316), 6.

    Google Scholar

    [3] A. Alam and M. Imdad, Relation-theoretic contraction principle, J. Fixed Point Theory Appl., 2015, 17(4), 693–702. doi: 10.1007/s11784-015-0247-y

    CrossRef Google Scholar

    [4] A. Alam and M. Imdad, Relation-theoretic metrical coincidence theorems, Filomat, 2017, 31(14), 4421–4439. doi: 10.2298/FIL1714421A

    CrossRef Google Scholar

    [5] A. Alam and M. Imdad, Nonlinear contractions in metric spaces under locally $T$-transitive binary relations, Fixed Point Theory, 2018, 19, 13–24. doi: 10.24193/fpt-ro.2018.1.02

    CrossRef $T$-transitive binary relations" target="_blank">Google Scholar

    [6] A. Alamer, N. H. E. Eljaneid, M. S. Aldhabani, N. H. Altaweel and F. A. Khan, Geraghty type contractions in relational metric space with applications to fractional differential equations, Fractal Fract., 2023, 7(565), 13.

    Google Scholar

    [7] B. Almarri, S. Mujahid and I. Uddin, New fixed point results for Geraghty contractions and their applications, J. Appl. Anal. Comp., 2023, 13(5), 2788–2798.

    Google Scholar

    [8] M. Arif, M. Imdad and A. Alam, Fixed point theorems under locally $T$-transitive binary relations employing Matkowski contractions, Miskolc Mathematical Notes, 2022, 23(1), 71–83. doi: 10.18514/MMN.2022.3220

    CrossRef $T$-transitive binary relations employing Matkowski contractions" target="_blank">Google Scholar

    [9] I. J. Cabrera, J. Harjani and K. B. Sadarangani, Existence and uniqueness of positive solutions for a singular fractional three-point boundary value problem, Abstr. Appl. Anal., 2012, 803417, 18.

    Google Scholar

    [10] M. Geraghty, On contractive mappings, Proc. Amer. Math. Soc., 1973, 40, 604–608. doi: 10.1090/S0002-9939-1973-0334176-5

    CrossRef Google Scholar

    [11] M. Gholami and A. Neamaty, $\lambda$-fixed point theorem with kinds of functions of mixed monotone operator, J. Appl. Anal. Comp., 2023, 13(4), 1852–1871.

    $\lambda$-fixed point theorem with kinds of functions of mixed monotone operator" target="_blank">Google Scholar

    [12] A. A. Harandi and H. Emami, A fixed point theorem for contraction type maps in partially ordered metric spaces and application to ordinary differential equations, Nonlinear Anal., 2010, 72(5), 2238–2242. doi: 10.1016/j.na.2009.10.023

    CrossRef Google Scholar

    [13] A. Hossain, A. Alam, S. Sessa and Q. H. Khan, Relation-theoretic weak contractions and applications, Mathematics, 2023, 11(1976), 15.

    Google Scholar

    [14] A. Hossain, M. Arif, S. Sessa and Q. H. Khan, Nonlinear relation-theoretic Suzuki-generalized Ćirić-type contractions and application to fractal spaces, Fractal Fract., 2022, 6(711), 13.

    Google Scholar

    [15] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V. : Amsterdam, Netherlands, 2006. xvi+523.

    Google Scholar

    [16] B. Kolman, R. C. Busby and S. Ross, Discrete Mathematical Structures, 6th Ed, Pearson/Prentice Hall, Hoboken, New Jersey, U.S., 2009.

    Google Scholar

    [17] S. Liang and J. Zhang, Existence and uniqueness of strictly nondecreasing and positive solution for a fractional three-point boundary value problem, Comput. Math. Appl., 2011, 62(3), 1333–1340. doi: 10.1016/j.camwa.2011.03.073

    CrossRef Google Scholar

    [18] S. Lipschutz, Schaum's Outlines of Theory and Problems of Set Theory and Related Topics, McGraw-Hill, New York, 1964.

    Google Scholar

    [19] I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, Academic Press: San Diego, CA, U.S., 1999, 198.

    Google Scholar

    [20] S. M. Saleh, W. M. Alfaqih, S. Sessa and F. Di Martino, New relation-theoretic fixed point theorems in fuzzy metric spaces with an application to fractional differential equations, Axioms, 2022, 11(117), 18.

    Google Scholar

    [21] A. Sun, Y. Su, Q. Yuan and T. Li, Existence of solutions to fractional differential equations with fractional-order derivative terms, J. Appl. Anal. Comp., 2021, 11(1), 486–520.

    Google Scholar

Article Metrics

Article views(559) PDF downloads(308) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint