Citation: | Saud Fahad Aldosary, I. Uddin, S. Mujahid. RELATIONAL GERAGHTY CONTRACTIONS WITH AN APPLICATION TO A SINGULAR FRACTIONAL BOUNDARY VALUE PROBLEM[J]. Journal of Applied Analysis & Computation, 2024, 14(6): 3480-3495. doi: 10.11948/20240056 |
In this article, we present some results on fixed points employing relational Geraghty contractions in the setting of metric space endued with a class of transitive binary relations. Our results complement, sharpen and improve several fixed point results of literature. By means of our findings, we discuss an existence and uniqueness theorem regarding the positive solutions of certain boundary value problems associated with a singular fractional differential equations.
[1] |
A. Alam, M. Arif and M. Imdad, Metrical fixed point theorems via locally finitely $T$-transitive binary relations under certain control functions, Miskolc Mathematical Notes, 2019, 20(1), 59–73. doi: 10.18514/MMN.2019.2468
CrossRef $T$-transitive binary relations under certain control functions" target="_blank">Google Scholar |
[2] | A. Alam, R. George and M. Imdad, Refinements to relation-theoretic contraction principle, Axioms, 2022, 11(316), 6. |
[3] | A. Alam and M. Imdad, Relation-theoretic contraction principle, J. Fixed Point Theory Appl., 2015, 17(4), 693–702. doi: 10.1007/s11784-015-0247-y |
[4] | A. Alam and M. Imdad, Relation-theoretic metrical coincidence theorems, Filomat, 2017, 31(14), 4421–4439. doi: 10.2298/FIL1714421A |
[5] |
A. Alam and M. Imdad, Nonlinear contractions in metric spaces under locally $T$-transitive binary relations, Fixed Point Theory, 2018, 19, 13–24. doi: 10.24193/fpt-ro.2018.1.02
CrossRef $T$-transitive binary relations" target="_blank">Google Scholar |
[6] | A. Alamer, N. H. E. Eljaneid, M. S. Aldhabani, N. H. Altaweel and F. A. Khan, Geraghty type contractions in relational metric space with applications to fractional differential equations, Fractal Fract., 2023, 7(565), 13. |
[7] | B. Almarri, S. Mujahid and I. Uddin, New fixed point results for Geraghty contractions and their applications, J. Appl. Anal. Comp., 2023, 13(5), 2788–2798. |
[8] |
M. Arif, M. Imdad and A. Alam, Fixed point theorems under locally $T$-transitive binary relations employing Matkowski contractions, Miskolc Mathematical Notes, 2022, 23(1), 71–83. doi: 10.18514/MMN.2022.3220
CrossRef $T$-transitive binary relations employing Matkowski contractions" target="_blank">Google Scholar |
[9] | I. J. Cabrera, J. Harjani and K. B. Sadarangani, Existence and uniqueness of positive solutions for a singular fractional three-point boundary value problem, Abstr. Appl. Anal., 2012, 803417, 18. |
[10] | M. Geraghty, On contractive mappings, Proc. Amer. Math. Soc., 1973, 40, 604–608. doi: 10.1090/S0002-9939-1973-0334176-5 |
[11] | M. Gholami and A. Neamaty, $\lambda$-fixed point theorem with kinds of functions of mixed monotone operator, J. Appl. Anal. Comp., 2023, 13(4), 1852–1871. |
[12] | A. A. Harandi and H. Emami, A fixed point theorem for contraction type maps in partially ordered metric spaces and application to ordinary differential equations, Nonlinear Anal., 2010, 72(5), 2238–2242. doi: 10.1016/j.na.2009.10.023 |
[13] | A. Hossain, A. Alam, S. Sessa and Q. H. Khan, Relation-theoretic weak contractions and applications, Mathematics, 2023, 11(1976), 15. |
[14] | A. Hossain, M. Arif, S. Sessa and Q. H. Khan, Nonlinear relation-theoretic Suzuki-generalized Ćirić-type contractions and application to fractal spaces, Fractal Fract., 2022, 6(711), 13. |
[15] | A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V. : Amsterdam, Netherlands, 2006. xvi+523. |
[16] | B. Kolman, R. C. Busby and S. Ross, Discrete Mathematical Structures, 6th Ed, Pearson/Prentice Hall, Hoboken, New Jersey, U.S., 2009. |
[17] | S. Liang and J. Zhang, Existence and uniqueness of strictly nondecreasing and positive solution for a fractional three-point boundary value problem, Comput. Math. Appl., 2011, 62(3), 1333–1340. doi: 10.1016/j.camwa.2011.03.073 |
[18] | S. Lipschutz, Schaum's Outlines of Theory and Problems of Set Theory and Related Topics, McGraw-Hill, New York, 1964. |
[19] | I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, Academic Press: San Diego, CA, U.S., 1999, 198. |
[20] | S. M. Saleh, W. M. Alfaqih, S. Sessa and F. Di Martino, New relation-theoretic fixed point theorems in fuzzy metric spaces with an application to fractional differential equations, Axioms, 2022, 11(117), 18. |
[21] | A. Sun, Y. Su, Q. Yuan and T. Li, Existence of solutions to fractional differential equations with fractional-order derivative terms, J. Appl. Anal. Comp., 2021, 11(1), 486–520. |