2024 Volume 14 Issue 6
Article Contents

Hernán A. Cuti Gutierrez, Nemat Nyamoradi, César E. Torres Ledesma. A BOUNDARY VALUE PROBLEM WITH IMPULSIVE EFFECTS AND RIEMANN-LIOUVILLE TEMPERED FRACTIONAL DERIVATIVES[J]. Journal of Applied Analysis & Computation, 2024, 14(6): 3496-3519. doi: 10.11948/20240068
Citation: Hernán A. Cuti Gutierrez, Nemat Nyamoradi, César E. Torres Ledesma. A BOUNDARY VALUE PROBLEM WITH IMPULSIVE EFFECTS AND RIEMANN-LIOUVILLE TEMPERED FRACTIONAL DERIVATIVES[J]. Journal of Applied Analysis & Computation, 2024, 14(6): 3496-3519. doi: 10.11948/20240068

A BOUNDARY VALUE PROBLEM WITH IMPULSIVE EFFECTS AND RIEMANN-LIOUVILLE TEMPERED FRACTIONAL DERIVATIVES

  • In this paper, we study a fractional impulsive differential equation with mixed tempered fractional derivatives. We justify some fundamental properties in the variational structure to fractional impulsive differential equations with the tempered fractional derivative operator. Finally, we study the existence of weak solutions with critical point theory and variational methods for the proposed problem. To prove the effectiveness of our main result, we investigate an interesting example.

    MSC: 26A33, 34A08, 34B15, 35J20
  • 加载中
  • [1] N. Abdellouahab, B. Tellab and K. Zennir, Existence and stability results of a nonlinear fractional integro-differential equation with integral boundary conditions, Kragujev. J. Math., 2022, 46, 685–699. doi: 10.46793/KgJMat2205.685A

    CrossRef Google Scholar

    [2] R. Almeida and M. Luísa Morgado, Analysis and numerical approximation of tempered fractional calculus of variations problems, Journal of Computational and Applied Mathematics, 2019, 361, 1–12.

    Google Scholar

    [3] C. Bai, Existence of solutions for a nonlinear fractional boundary value problem via a local minimum theorem, Electron. J. Differ. Equ., 2012, 176, 1–9.

    Google Scholar

    [4] K. Balachandran, V. Govindaraj, M. Rivero and J. Trujillo, Controllability of fractional damped dynamical systems, Appl. Math. Comput., 2015, 257, 66–73.

    Google Scholar

    [5] T. Bentrcia and A. Mennouni, On the asymptotic stability of a Bresse system with two fractional damping terms: Theoretical and numerical analysis, Discret. Contin. Dyn. Syst. Ser. B, 2023, 28, 580–622. doi: 10.3934/dcdsb.2022090

    CrossRef Google Scholar

    [6] T. Blaszczyk and M. Ciesielski, Fractional oscillator equation transformation into integral equation and numerical solution, Appl. Math. Comput., 2015, 257, 428–435.

    Google Scholar

    [7] G. Bonanno, R. Rodríguez-López and S. Tersian, Existence of solutions to boundary value problem for impulsive fractional differential equations, Fractional Calculus and Applied Analysis, 2014, 17, 717–744. doi: 10.2478/s13540-014-0196-y

    CrossRef Google Scholar

    [8] W. Chen, X. Xu and S. -P. Zhu, Analytically pricing double barrier options based on a time-fractional Black-Scholes equation, Comp. Math. App., 2015, 69(12), 1407–1419. doi: 10.1016/j.camwa.2015.03.025

    CrossRef Google Scholar

    [9] B. Dai, H. Su and D. Hu, Periodic solution of a delayed ratio-dependent predator-prey model with monotonic functional response and impulse, Nonlinear Anal., 2009, 70, 126–134. doi: 10.1016/j.na.2007.11.036

    CrossRef Google Scholar

    [10] D. del-Castillo-Negrete, Truncation effects in superdiffusive front propagation with Lévy flights, Phys. Rev. E, 2009, 79, 031120.

    Google Scholar

    [11] K. Deng, M. Chen and T. Sun, A weighted numerical algorithm for two and three dimensional two-sided space fractional wave equations, Applied Mathematics and Computation, 2015, 257, 264–273. doi: 10.1016/j.amc.2014.08.039

    CrossRef Google Scholar

    [12] K. Diethelm, The Analysis of Fractional Differential Equations, Springer-Verlag, Berlin, Heidelberg, 2010.

    Google Scholar

    [13] A. Esen and O. Tasbozan, An approach to time fractional gas dynamics equation: Quadratic $B$-spline Galerkin method, Appl. Math. Comput., 2015, 261, 330–336.

    $B$-spline Galerkin method" target="_blank">Google Scholar

    [14] B. Fisher, B. Jolevsaka-Tuneska and Et. Adem KiliÇman, On defining the incomplete gamma function, Integral Transforms and Special Functions, 2003, 14(4), 293–299. doi: 10.1080/1065246031000081667

    CrossRef Google Scholar

    [15] J. Gajda and M. Magdziarz, Fractional Fokker-Planck equation with tempered $\alpha$-stable waiting times: Langevin picture and computer simulation, Phys. Rev. E, 2010, 82, 011117. doi: 10.1103/PhysRevE.82.011117

    CrossRef $\alpha$-stable waiting times: Langevin picture and computer simulation" target="_blank">Google Scholar

    [16] R. Garrappa, I. Moret and M. Popolizio, Solving the time-fractional Schrödinger equation by Krylov projection methods, J. Comput. Phys., 2015, 293, 115–134. doi: 10.1016/j.jcp.2014.09.023

    CrossRef Google Scholar

    [17] P. George, A. Nandakumaran and A. Arapostathis, A note on controllability of impulsive systems, J. Math. Anal. Appl., 2000, 241, 276–283. doi: 10.1006/jmaa.1999.6632

    CrossRef Google Scholar

    [18] T. Gou and H. Sun, Solutions of nonlinear Schrödinger equation with fractional Laplacian without the Ambrosetti-Rabinowitz condition, Appl. Math. Comput., 2015, 257, 409–416.

    Google Scholar

    [19] M. Izydorek and J. Janczewska, Homoclinic solutions for nonautonomous second order Hamiltonian systems with a coercive potential, J. Math. Anal. Appl., 2007, 335, 1119–1127. doi: 10.1016/j.jmaa.2007.02.038

    CrossRef Google Scholar

    [20] F. Jiao and Y. Zhou, Existence of solutions for a class of fractional boundary value problems via critical point theory, Comput. Math. Appl., 2011, 62, 1181–1199. doi: 10.1016/j.camwa.2011.03.086

    CrossRef Google Scholar

    [21] F. Jiao and Y. Zhou, Existence results for fractional boundary value problem via critical point theory, J. Bifur. Chaos. Appl. Sci. Eng., 2012, 22, 1250086. doi: 10.1142/S0218127412500861

    CrossRef Google Scholar

    [22] A. Kilbas, O. Marichev and J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol 204, Amsterdam, 2006.

    Google Scholar

    [23] A. Kullberg and D. del-Castillo-Negrete, Transport in the spatially tempered, fractional Fokker-Planck equation, J. Phys. A: Math. Theor., 2012, 45, 255101. doi: 10.1088/1751-8113/45/25/255101

    CrossRef Google Scholar

    [24] D. Kumar and J. Singh, Fractional Calculus in Medical and Health Science, CRC Press, 2020.

    Google Scholar

    [25] V. Lakshmikantham, D. Bainov and P. Simeonov, Theory of Impulsive Differential Equations, Series in Modern Applied Mathematics, 6, World Scientific, Teaneck, NJ, 1989.

    Google Scholar

    [26] H. Li, Y. Jiang, Z. Wang and C. Hu, Global stability problem for feedback control systems of impulsive fractional differential equations on networks, Neurocomputing, 2015, 161, 155–161. doi: 10.1016/j.neucom.2015.02.053

    CrossRef Google Scholar

    [27] A. Liemert and A. Kienle, Fundamental solution of the tempered fractional diffusion equation, Journal of Mathematical Physics, 2015, 56, 113504. doi: 10.1063/1.4935475

    CrossRef Google Scholar

    [28] Z. Lin, J. Wang and W. Wei, Fractional differential equation models with pulses and criterion for pest management, Appl. Math. Comput., 2015, 257, 398–408.

    Google Scholar

    [29] J. Machado, F. Mainardi and V. Kiryakova, Fractional calculus: Quo vadimus? (Where are we going?), Frac. Cal. Appl. Anal., 2015, 18(2), 495–526. doi: 10.1515/fca-2015-0031

    CrossRef Google Scholar

    [30] R. Magin, Fractional calculus in bioengineering, Part 3, Critical ReviewsTM in Biomedical Engineering 32.3 & 4, 2004.

    Google Scholar

    [31] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Berlin, Springer-Verlag, 1989.

    Google Scholar

    [32] M. Meerschaert, Y. Zhang and B. Baeumer, Tempered anomalous diffusion in heterogeneous systems, Geophys. Res. Lett., 2008, 35, L17403.

    Google Scholar

    [33] A. Mennouni, L. Bougoffa and A. Wazwaz, A new recursive scheme for solving a fractional differential equation of ray tracing through the crystalline lens, Optical and Quantum Electronics, 2022, 54, 373. doi: 10.1007/s11082-022-03766-w

    CrossRef Google Scholar

    [34] N. Nyamoradi and R. Rodríguez-López, On boundary value problems for impulsive fractional differential equations, Applied Math. Comput., 2015, 271, 874–892.

    Google Scholar

    [35] N. Nyamoradi and R. Rodríguez-López, Multiplicity of solutions to fractional Hamiltonian systems with impulsive effects, Chaos Solit. Fract., 2017, 102, 254–263. doi: 10.1016/j.chaos.2017.05.020

    CrossRef Google Scholar

    [36] N. Nyamoradi and Y. Zhou, Bifurcation results for a class of fractional Hamiltonian systems with Liouville-Wely fractional derivatives, J. Vib. Control, 2014, 5, 1358–1368.

    Google Scholar

    [37] P. Pandey, R. Pandey, S. Yadav and O. Agrawal, Variational approach for tempered fractional sturm-liouville problem, Int. J. Appl. Comput. Math, 2021, 7, 51. doi: 10.1007/s40819-021-01000-x

    CrossRef Google Scholar

    [38] A. Qian and C. Li, Infinitely many solutions for a robin boundary value problem, Int. J. Differ. Equ., 2010. DOI: 10.1155/2010/548702.

    CrossRef Google Scholar

    [39] P. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics, vol. 65. Washington DC, USA: American Mathematical Society, 1986.

    Google Scholar

    [40] G. Rajchakit, A. Pratap, R. Raja, J. Cao, J. Alzabut and C. Huang, Hybrid control scheme for projective lag synchronization of Riemann Liouville sense fractional order memristive BAM neural networks with mixed delays, Mathematics, 2019, 7, 759. doi: 10.3390/math7080759

    CrossRef Google Scholar

    [41] R. Rodríguez-López and S. Tersian, Multiple solutions to boundary value problem for impulsive fractional differential equations, Fract. Calc. Appl. Anal., 2014, 17(4), 1016–1038. doi: 10.2478/s13540-014-0212-2

    CrossRef Google Scholar

    [42] F. Sabzikar, M. Meerschaert and J. Chen, Tempered fractional calculus, J. Comput. Phy., 2015, 293, 14–28. doi: 10.1016/j.jcp.2014.04.024

    CrossRef Google Scholar

    [43] S. Saifullad, A. Ali, A. Khan, K. Shah and T. Abdeljawad, A Novel Tempered Fractional Transform: Theory, Properties and Applications to Differential Equations, Fractals, 2023. DOI: 10.1142/S0218348X23400455.

    CrossRef Google Scholar

    [44] A. Samoilenko and N. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore, 1995.

    Google Scholar

    [45] A. Stanislavsky, K. Weron and A. Weron, Diffusion and relaxation controlled by tempered $\alpha$-stable processes, Phys. Rev. E, 2008, 78, 051106. doi: 10.1103/PhysRevE.78.051106

    CrossRef $\alpha$-stable processes" target="_blank">Google Scholar

    [46] H. Sun and Q. Zhang, Existence of solutions for a fractional boundary value problem via the mountain pass method and an iterative technique, Comput. Math. Appl., 2012, 64, 3436–3443. doi: 10.1016/j.camwa.2012.02.023

    CrossRef Google Scholar

    [47] V. Tarasov, Handbook of Fractional Calculus with Applications, Vol. 5. Berlin, de Gruyter, 2019.

    Google Scholar

    [48] C. Torres Ledesma, H. Cuti Gutierrez, J. Ávalos Rodríguez and W. Zubiaga Vera, Some boundedness results for Riemann-Liouville tempered fractional integrals, Fract. Calc. Appl. Anal., 2024, 27, 818–847. doi: 10.1007/s13540-024-00247-7

    CrossRef Google Scholar

    [49] C. Torres Ledesma and N. Nyamoradi, $(k, \psi)$-Hilfer variational problem, J. Elliptic Parab. Equa., 2022, 8, 681–709. doi: 10.1007/s41808-022-00173-w

    CrossRef $(k, \psi)$-Hilfer variational problem" target="_blank">Google Scholar

    [50] C. Torres Ledesma and N. Nyamoradi, $(k, \psi)$-Hilfer impulsive variational problem, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 2023, 117, 42. doi: 10.1007/s13398-022-01377-4

    CrossRef $(k, \psi)$-Hilfer impulsive variational problem" target="_blank">Google Scholar

    [51] C. Torres Ledesma and J. Vanterler da C. Sousa, Fractional integration by parts and Sobolev-type inequalities for $\psi$-fractional operators, Math. Meth. Appl. Sci., 2022, 45, 9945–9966. doi: 10.1002/mma.8348

    CrossRef $\psi$-fractional operators" target="_blank">Google Scholar

    [52] Y. Wang, Y. Li and J. Zhou, Solvability of boundary value problems for impulsive fractional differential equations via critical point theory, Mediterr. J. Math., 2016, 13, 4845–4866. doi: 10.1007/s00009-016-0779-4

    CrossRef Google Scholar

    [53] S. Zhang, Existence of a solution for the fractional differential equation with nonlinear boundary conditions, Comput. Math. Appl., 2011, 61, 1202–1208. doi: 10.1016/j.camwa.2010.12.071

    CrossRef Google Scholar

    [54] Y. Zhang, Moments for tempered fractional advection-diffusion equations, J. Stat. Phys., 2010, 139, 915–939. doi: 10.1007/s10955-010-9965-0

    CrossRef Google Scholar

Article Metrics

Article views(917) PDF downloads(300) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint