Citation: | Hernán A. Cuti Gutierrez, Nemat Nyamoradi, César E. Torres Ledesma. A BOUNDARY VALUE PROBLEM WITH IMPULSIVE EFFECTS AND RIEMANN-LIOUVILLE TEMPERED FRACTIONAL DERIVATIVES[J]. Journal of Applied Analysis & Computation, 2024, 14(6): 3496-3519. doi: 10.11948/20240068 |
In this paper, we study a fractional impulsive differential equation with mixed tempered fractional derivatives. We justify some fundamental properties in the variational structure to fractional impulsive differential equations with the tempered fractional derivative operator. Finally, we study the existence of weak solutions with critical point theory and variational methods for the proposed problem. To prove the effectiveness of our main result, we investigate an interesting example.
[1] | N. Abdellouahab, B. Tellab and K. Zennir, Existence and stability results of a nonlinear fractional integro-differential equation with integral boundary conditions, Kragujev. J. Math., 2022, 46, 685–699. doi: 10.46793/KgJMat2205.685A |
[2] | R. Almeida and M. Luísa Morgado, Analysis and numerical approximation of tempered fractional calculus of variations problems, Journal of Computational and Applied Mathematics, 2019, 361, 1–12. |
[3] | C. Bai, Existence of solutions for a nonlinear fractional boundary value problem via a local minimum theorem, Electron. J. Differ. Equ., 2012, 176, 1–9. |
[4] | K. Balachandran, V. Govindaraj, M. Rivero and J. Trujillo, Controllability of fractional damped dynamical systems, Appl. Math. Comput., 2015, 257, 66–73. |
[5] | T. Bentrcia and A. Mennouni, On the asymptotic stability of a Bresse system with two fractional damping terms: Theoretical and numerical analysis, Discret. Contin. Dyn. Syst. Ser. B, 2023, 28, 580–622. doi: 10.3934/dcdsb.2022090 |
[6] | T. Blaszczyk and M. Ciesielski, Fractional oscillator equation transformation into integral equation and numerical solution, Appl. Math. Comput., 2015, 257, 428–435. |
[7] | G. Bonanno, R. Rodríguez-López and S. Tersian, Existence of solutions to boundary value problem for impulsive fractional differential equations, Fractional Calculus and Applied Analysis, 2014, 17, 717–744. doi: 10.2478/s13540-014-0196-y |
[8] | W. Chen, X. Xu and S. -P. Zhu, Analytically pricing double barrier options based on a time-fractional Black-Scholes equation, Comp. Math. App., 2015, 69(12), 1407–1419. doi: 10.1016/j.camwa.2015.03.025 |
[9] | B. Dai, H. Su and D. Hu, Periodic solution of a delayed ratio-dependent predator-prey model with monotonic functional response and impulse, Nonlinear Anal., 2009, 70, 126–134. doi: 10.1016/j.na.2007.11.036 |
[10] | D. del-Castillo-Negrete, Truncation effects in superdiffusive front propagation with Lévy flights, Phys. Rev. E, 2009, 79, 031120. |
[11] | K. Deng, M. Chen and T. Sun, A weighted numerical algorithm for two and three dimensional two-sided space fractional wave equations, Applied Mathematics and Computation, 2015, 257, 264–273. doi: 10.1016/j.amc.2014.08.039 |
[12] | K. Diethelm, The Analysis of Fractional Differential Equations, Springer-Verlag, Berlin, Heidelberg, 2010. |
[13] | A. Esen and O. Tasbozan, An approach to time fractional gas dynamics equation: Quadratic $B$-spline Galerkin method, Appl. Math. Comput., 2015, 261, 330–336. |
[14] | B. Fisher, B. Jolevsaka-Tuneska and Et. Adem KiliÇman, On defining the incomplete gamma function, Integral Transforms and Special Functions, 2003, 14(4), 293–299. doi: 10.1080/1065246031000081667 |
[15] |
J. Gajda and M. Magdziarz, Fractional Fokker-Planck equation with tempered $\alpha$-stable waiting times: Langevin picture and computer simulation, Phys. Rev. E, 2010, 82, 011117. doi: 10.1103/PhysRevE.82.011117
CrossRef $\alpha$-stable waiting times: Langevin picture and computer simulation" target="_blank">Google Scholar |
[16] | R. Garrappa, I. Moret and M. Popolizio, Solving the time-fractional Schrödinger equation by Krylov projection methods, J. Comput. Phys., 2015, 293, 115–134. doi: 10.1016/j.jcp.2014.09.023 |
[17] | P. George, A. Nandakumaran and A. Arapostathis, A note on controllability of impulsive systems, J. Math. Anal. Appl., 2000, 241, 276–283. doi: 10.1006/jmaa.1999.6632 |
[18] | T. Gou and H. Sun, Solutions of nonlinear Schrödinger equation with fractional Laplacian without the Ambrosetti-Rabinowitz condition, Appl. Math. Comput., 2015, 257, 409–416. |
[19] | M. Izydorek and J. Janczewska, Homoclinic solutions for nonautonomous second order Hamiltonian systems with a coercive potential, J. Math. Anal. Appl., 2007, 335, 1119–1127. doi: 10.1016/j.jmaa.2007.02.038 |
[20] | F. Jiao and Y. Zhou, Existence of solutions for a class of fractional boundary value problems via critical point theory, Comput. Math. Appl., 2011, 62, 1181–1199. doi: 10.1016/j.camwa.2011.03.086 |
[21] | F. Jiao and Y. Zhou, Existence results for fractional boundary value problem via critical point theory, J. Bifur. Chaos. Appl. Sci. Eng., 2012, 22, 1250086. doi: 10.1142/S0218127412500861 |
[22] | A. Kilbas, O. Marichev and J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol 204, Amsterdam, 2006. |
[23] | A. Kullberg and D. del-Castillo-Negrete, Transport in the spatially tempered, fractional Fokker-Planck equation, J. Phys. A: Math. Theor., 2012, 45, 255101. doi: 10.1088/1751-8113/45/25/255101 |
[24] | D. Kumar and J. Singh, Fractional Calculus in Medical and Health Science, CRC Press, 2020. |
[25] | V. Lakshmikantham, D. Bainov and P. Simeonov, Theory of Impulsive Differential Equations, Series in Modern Applied Mathematics, 6, World Scientific, Teaneck, NJ, 1989. |
[26] | H. Li, Y. Jiang, Z. Wang and C. Hu, Global stability problem for feedback control systems of impulsive fractional differential equations on networks, Neurocomputing, 2015, 161, 155–161. doi: 10.1016/j.neucom.2015.02.053 |
[27] | A. Liemert and A. Kienle, Fundamental solution of the tempered fractional diffusion equation, Journal of Mathematical Physics, 2015, 56, 113504. doi: 10.1063/1.4935475 |
[28] | Z. Lin, J. Wang and W. Wei, Fractional differential equation models with pulses and criterion for pest management, Appl. Math. Comput., 2015, 257, 398–408. |
[29] | J. Machado, F. Mainardi and V. Kiryakova, Fractional calculus: Quo vadimus? (Where are we going?), Frac. Cal. Appl. Anal., 2015, 18(2), 495–526. doi: 10.1515/fca-2015-0031 |
[30] | R. Magin, Fractional calculus in bioengineering, Part 3, Critical ReviewsTM in Biomedical Engineering 32.3 & 4, 2004. |
[31] | J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Berlin, Springer-Verlag, 1989. |
[32] | M. Meerschaert, Y. Zhang and B. Baeumer, Tempered anomalous diffusion in heterogeneous systems, Geophys. Res. Lett., 2008, 35, L17403. |
[33] | A. Mennouni, L. Bougoffa and A. Wazwaz, A new recursive scheme for solving a fractional differential equation of ray tracing through the crystalline lens, Optical and Quantum Electronics, 2022, 54, 373. doi: 10.1007/s11082-022-03766-w |
[34] | N. Nyamoradi and R. Rodríguez-López, On boundary value problems for impulsive fractional differential equations, Applied Math. Comput., 2015, 271, 874–892. |
[35] | N. Nyamoradi and R. Rodríguez-López, Multiplicity of solutions to fractional Hamiltonian systems with impulsive effects, Chaos Solit. Fract., 2017, 102, 254–263. doi: 10.1016/j.chaos.2017.05.020 |
[36] | N. Nyamoradi and Y. Zhou, Bifurcation results for a class of fractional Hamiltonian systems with Liouville-Wely fractional derivatives, J. Vib. Control, 2014, 5, 1358–1368. |
[37] | P. Pandey, R. Pandey, S. Yadav and O. Agrawal, Variational approach for tempered fractional sturm-liouville problem, Int. J. Appl. Comput. Math, 2021, 7, 51. doi: 10.1007/s40819-021-01000-x |
[38] | A. Qian and C. Li, Infinitely many solutions for a robin boundary value problem, Int. J. Differ. Equ., 2010. DOI: 10.1155/2010/548702. |
[39] | P. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics, vol. 65. Washington DC, USA: American Mathematical Society, 1986. |
[40] | G. Rajchakit, A. Pratap, R. Raja, J. Cao, J. Alzabut and C. Huang, Hybrid control scheme for projective lag synchronization of Riemann Liouville sense fractional order memristive BAM neural networks with mixed delays, Mathematics, 2019, 7, 759. doi: 10.3390/math7080759 |
[41] | R. Rodríguez-López and S. Tersian, Multiple solutions to boundary value problem for impulsive fractional differential equations, Fract. Calc. Appl. Anal., 2014, 17(4), 1016–1038. doi: 10.2478/s13540-014-0212-2 |
[42] | F. Sabzikar, M. Meerschaert and J. Chen, Tempered fractional calculus, J. Comput. Phy., 2015, 293, 14–28. doi: 10.1016/j.jcp.2014.04.024 |
[43] | S. Saifullad, A. Ali, A. Khan, K. Shah and T. Abdeljawad, A Novel Tempered Fractional Transform: Theory, Properties and Applications to Differential Equations, Fractals, 2023. DOI: 10.1142/S0218348X23400455. |
[44] | A. Samoilenko and N. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore, 1995. |
[45] |
A. Stanislavsky, K. Weron and A. Weron, Diffusion and relaxation controlled by tempered $\alpha$-stable processes, Phys. Rev. E, 2008, 78, 051106. doi: 10.1103/PhysRevE.78.051106
CrossRef $\alpha$-stable processes" target="_blank">Google Scholar |
[46] | H. Sun and Q. Zhang, Existence of solutions for a fractional boundary value problem via the mountain pass method and an iterative technique, Comput. Math. Appl., 2012, 64, 3436–3443. doi: 10.1016/j.camwa.2012.02.023 |
[47] | V. Tarasov, Handbook of Fractional Calculus with Applications, Vol. 5. Berlin, de Gruyter, 2019. |
[48] | C. Torres Ledesma, H. Cuti Gutierrez, J. Ávalos Rodríguez and W. Zubiaga Vera, Some boundedness results for Riemann-Liouville tempered fractional integrals, Fract. Calc. Appl. Anal., 2024, 27, 818–847. doi: 10.1007/s13540-024-00247-7 |
[49] |
C. Torres Ledesma and N. Nyamoradi, $(k, \psi)$-Hilfer variational problem, J. Elliptic Parab. Equa., 2022, 8, 681–709. doi: 10.1007/s41808-022-00173-w
CrossRef $(k, \psi)$-Hilfer variational problem" target="_blank">Google Scholar |
[50] |
C. Torres Ledesma and N. Nyamoradi, $(k, \psi)$-Hilfer impulsive variational problem, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 2023, 117, 42. doi: 10.1007/s13398-022-01377-4
CrossRef $(k, \psi)$-Hilfer impulsive variational problem" target="_blank">Google Scholar |
[51] |
C. Torres Ledesma and J. Vanterler da C. Sousa, Fractional integration by parts and Sobolev-type inequalities for $\psi$-fractional operators, Math. Meth. Appl. Sci., 2022, 45, 9945–9966. doi: 10.1002/mma.8348
CrossRef $\psi$-fractional operators" target="_blank">Google Scholar |
[52] | Y. Wang, Y. Li and J. Zhou, Solvability of boundary value problems for impulsive fractional differential equations via critical point theory, Mediterr. J. Math., 2016, 13, 4845–4866. doi: 10.1007/s00009-016-0779-4 |
[53] | S. Zhang, Existence of a solution for the fractional differential equation with nonlinear boundary conditions, Comput. Math. Appl., 2011, 61, 1202–1208. doi: 10.1016/j.camwa.2010.12.071 |
[54] | Y. Zhang, Moments for tempered fractional advection-diffusion equations, J. Stat. Phys., 2010, 139, 915–939. doi: 10.1007/s10955-010-9965-0 |