2025 Volume 15 Issue 1
Article Contents

Abdelati El Allaoui, Lamine Mbarki, Youssef Allaoui, J. Vanterler da C. Sousa. SOLVABILITY OF LANGEVIN FRACTIONAL DIFFERENTIAL EQUATION OF HIGHER-ORDER WITH INTEGRAL BOUNDARY CONDITIONS[J]. Journal of Applied Analysis & Computation, 2025, 15(1): 316-332. doi: 10.11948/20240092
Citation: Abdelati El Allaoui, Lamine Mbarki, Youssef Allaoui, J. Vanterler da C. Sousa. SOLVABILITY OF LANGEVIN FRACTIONAL DIFFERENTIAL EQUATION OF HIGHER-ORDER WITH INTEGRAL BOUNDARY CONDITIONS[J]. Journal of Applied Analysis & Computation, 2025, 15(1): 316-332. doi: 10.11948/20240092

SOLVABILITY OF LANGEVIN FRACTIONAL DIFFERENTIAL EQUATION OF HIGHER-ORDER WITH INTEGRAL BOUNDARY CONDITIONS

  • This paper we concern the solvability and uniqueness of higher-order Langevin fractional differential equations subject to integral boundary conditions. We establish the existence of solutions using Krasnoselskii's fixed point theorem, while uniqueness is demonstrated through the application of the Banach fixed point theorem. The obtained results offer insights into the solution space of these complex differential equations, shedding light on their behavior and properties. To illustrate the practical implications of our findings, we provide a concrete example at the end of this paper.

    MSC: 34A08, 34A12
  • 加载中
  • [1] S. Abbas, Existence of solutions to fractional order ordinary and delay differential equations and applications, Electron. J. Diff. Equ., 2011, 2011(9), 1–11.

    Google Scholar

    [2] S. Abbas, M. Banerjee and S. Momani, Dynamical analysis of a fractional order modified logistic model, Comp. Math. Appl., 2011, 62(3), 1098–1104. doi: 10.1016/j.camwa.2011.03.072

    CrossRef Google Scholar

    [3] R. P. Agarwal, Y. Zhou and Y. He, Existence of fractional neutral functional differential equations, Comput. Math. Appl., 2010, 59(3), 1095–1100. doi: 10.1016/j.camwa.2009.05.010

    CrossRef Google Scholar

    [4] M. S. Ansari, M. Malik and D. Baleanu, Controllability of prabhakar fractional dynamical systems, Qual. Theory Dyn. Sys., 2024, 23(2), 1–28.

    Google Scholar

    [5] R. L. Bagley and P. J. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity, J. Rheol., 1983, 27, 201–210. doi: 10.1122/1.549724

    CrossRef Google Scholar

    [6] Z. Baitiche, C. Derbazi and M. M. Matar, Ulam stability for nonlinear-Langevin fractional differential equations involving two fractional orders in the $\psi$-Caputo sense, Applicable Anal., 2022, 101(14), 4866–4881. doi: 10.1080/00036811.2021.1873300

    CrossRef $\psi$-Caputo sense" target="_blank">Google Scholar

    [7] M. Benchohra and F. Ouaar, Existence results for nonlinear fractional differential equations with integral boundary conditions, Bull. Math. Anal. Appl., 2010, 2(4), 7–15.

    Google Scholar

    [8] K. Deng and H. A. Levine, The role of critical exponents in blow-up theorems: The sequel, J. Math. Anal. Appl., 2000, 243, 85–126. doi: 10.1006/jmaa.1999.6663

    CrossRef Google Scholar

    [9] A. El Allaoui, General Fractional Integro-Differential Equation of Order $\varrho\in (2,3]$ Involving Integral Boundary Conditions, Commun. Math. Anal., 2023.

    $\varrho\in (2,3]$ Involving Integral Boundary Conditions" target="_blank">Google Scholar

    [10] A. M. El-Sayed and E. O. Bin-Tahar, Positive non-decreasing solutions for a multi-term fractional-order functional differential equation with integral conditions, Elec. J. Diff. Equ., 2011, 2011(166), 18.

    Google Scholar

    [11] L. Gaul, P. Klein and S. Kemple, Damping description involving fractional operators, Mech. Syst. Signal Proc., 1991, 5, 81–88. doi: 10.1016/0888-3270(91)90016-X

    CrossRef Google Scholar

    [12] R. Gorenflo, Abel Integral Equations with Special Emphasis on Applications, Lectures Math. Sci. vol. 13, University of Tokyo, 1996.

    Google Scholar

    [13] S. B. Hadid, Local and global existence theorems on differential equations of non-integer order, J. Fract. Calc. , 1995, 7, 101–105.

    Google Scholar

    [14] D. Hainaut, A mutually exciting rough jump-diffusion for financial modelling, Frac. Cal. Appl. Anal., 2024, 1–34.

    Google Scholar

    [15] J. K. Hale and S. Verduyn, Introduction to Functional Differential Equations, Appl. Math. Sci., 99, Springer-Verlag, New York, 1993.

    Google Scholar

    [16] H. Hassani, P. Agarwal, Z. Avazzadeh, J. A. Machado, S. Mehrabi and E. Naraghirad, Optimal solution of a fractional epidemic model of COVID-19, Nonlinear Studies, 2024, 31(1).

    Google Scholar

    [17] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.

    Google Scholar

    [18] R. W. Ibrahim, Existence and uniquness of holomographyic solutions for fractinal Cauchy problem, J. Math. Anal. Appl., 2011, 380, 232–240. doi: 10.1016/j.jmaa.2011.03.001

    CrossRef Google Scholar

    [19] T. Kanwal, A. Hussain, I. Avcı, S. Etemad, S. Rezapour and D. F. M. Torres, Dynamics of a model of polluted lakes via fractal–fractional operators with two different numerical algorithms, Chaos, Solitons & Fractals, 2024, 181, 114653.

    Google Scholar

    [20] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Vol. 204 of North-Holland Mathematics Studies, Elsevier, Amesterdam, 2006.

    Google Scholar

    [21] M. Kirane and N.-E. Tatar, Nonexistence of solutions to a hyperbolic equation with a time fractional damping, Z. Anal. Anwend, (J. Anal. Appl.), 2006, 25, 131–142. doi: 10.4171/zaa/1281

    CrossRef Google Scholar

    [22] E. Lutz, Fractional Langevin equation, Phys. Rev. E, 2001, 64, 051106. doi: 10.1103/PhysRevE.64.051106

    CrossRef Google Scholar

    [23] I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering. vol. 198, New York/London, Springer, 1999.

    Google Scholar

    [24] R. Rizwan, Existence theory and stability analysis of fractional langevin equation, Int. J. Nonlinear Sci. Numer. Simul., 2019, 20, 833–848. doi: 10.1515/ijnsns-2019-0053

    CrossRef Google Scholar

    [25] R. Rizwan and A. Zada, Nonlinear impulsive Langevin equations with mixed derivatives, Math. Meth. Appl. Sci., 2020, 43, 427–442. doi: 10.1002/mma.5902

    CrossRef Google Scholar

    [26] S. G. Samko, A. A. Kilbas and O. I Marichev, Fractional Integrals and Derivatives: Theory and Applications, Amesterdam: Gordon and Breach, 1993.

    Google Scholar

    [27] A. Shit and S. N. Bora, ESR fractional model with non-zero uniform average blood velocity, Comput. Appl. Math., 2022, 41(8), 354. doi: 10.1007/s40314-022-02072-1

    CrossRef Google Scholar

    [28] C. A. Tudor, The overdamped generalized Langevin equation with Hermite noise, Frac. Cal. Appl. Anal., 2023, 26(3), 1082–1103. doi: 10.1007/s13540-023-00153-4

    CrossRef Google Scholar

    [29] J. Vanterler da C. Sousa and E. Capelas De Oliveira, Leibniz type rule: $\psi$-Hilfer fractional operator, Commun. Nonlinear Sci. Numer. Simul., 2019, 77, 305–311.

    $\psi$-Hilfer fractional operator" target="_blank">Google Scholar

    [30] J. Vanterler da C. Sousa and E. Capelas De Oliveira, On the $\psi$-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 2018, 60, 72–91.

    $\psi$-Hilfer fractional derivative" target="_blank">Google Scholar

    [31] J. Vanterler da C. Sousa, N. N. Magnun dos Satnos, L. A. Magna and E. Capelas de Oliveira, A new approach to the validation of an ESR fractional model, Comput. Appl. Math., 2021, 40, 1–20.

    Google Scholar

    [32] B. Zhang, R. Majeed and M. Alam, On fractional Langevin equations with stieltjes integral conditions, Math., 2022, 10, 3877.

    Google Scholar

    [33] S. Zhang, Positive solutions for boundary-value problems of nonlinear fractional equations, Electron. J. Diff. Equ., 2006, 36, 12.

    Google Scholar

Article Metrics

Article views(800) PDF downloads(337) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint