Citation: | Abdelati El Allaoui, Lamine Mbarki, Youssef Allaoui, J. Vanterler da C. Sousa. SOLVABILITY OF LANGEVIN FRACTIONAL DIFFERENTIAL EQUATION OF HIGHER-ORDER WITH INTEGRAL BOUNDARY CONDITIONS[J]. Journal of Applied Analysis & Computation, 2025, 15(1): 316-332. doi: 10.11948/20240092 |
This paper we concern the solvability and uniqueness of higher-order Langevin fractional differential equations subject to integral boundary conditions. We establish the existence of solutions using Krasnoselskii's fixed point theorem, while uniqueness is demonstrated through the application of the Banach fixed point theorem. The obtained results offer insights into the solution space of these complex differential equations, shedding light on their behavior and properties. To illustrate the practical implications of our findings, we provide a concrete example at the end of this paper.
[1] | S. Abbas, Existence of solutions to fractional order ordinary and delay differential equations and applications, Electron. J. Diff. Equ., 2011, 2011(9), 1–11. |
[2] | S. Abbas, M. Banerjee and S. Momani, Dynamical analysis of a fractional order modified logistic model, Comp. Math. Appl., 2011, 62(3), 1098–1104. doi: 10.1016/j.camwa.2011.03.072 |
[3] | R. P. Agarwal, Y. Zhou and Y. He, Existence of fractional neutral functional differential equations, Comput. Math. Appl., 2010, 59(3), 1095–1100. doi: 10.1016/j.camwa.2009.05.010 |
[4] | M. S. Ansari, M. Malik and D. Baleanu, Controllability of prabhakar fractional dynamical systems, Qual. Theory Dyn. Sys., 2024, 23(2), 1–28. |
[5] | R. L. Bagley and P. J. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity, J. Rheol., 1983, 27, 201–210. doi: 10.1122/1.549724 |
[6] |
Z. Baitiche, C. Derbazi and M. M. Matar, Ulam stability for nonlinear-Langevin fractional differential equations involving two fractional orders in the $\psi$-Caputo sense, Applicable Anal., 2022, 101(14), 4866–4881. doi: 10.1080/00036811.2021.1873300
CrossRef $\psi$-Caputo sense" target="_blank">Google Scholar |
[7] | M. Benchohra and F. Ouaar, Existence results for nonlinear fractional differential equations with integral boundary conditions, Bull. Math. Anal. Appl., 2010, 2(4), 7–15. |
[8] | K. Deng and H. A. Levine, The role of critical exponents in blow-up theorems: The sequel, J. Math. Anal. Appl., 2000, 243, 85–126. doi: 10.1006/jmaa.1999.6663 |
[9] |
A. El Allaoui, General Fractional Integro-Differential Equation of Order $\varrho\in (2,3]$ Involving Integral Boundary Conditions, Commun. Math. Anal., 2023.
$\varrho\in (2,3]$ Involving Integral Boundary Conditions" target="_blank">Google Scholar |
[10] | A. M. El-Sayed and E. O. Bin-Tahar, Positive non-decreasing solutions for a multi-term fractional-order functional differential equation with integral conditions, Elec. J. Diff. Equ., 2011, 2011(166), 18. |
[11] | L. Gaul, P. Klein and S. Kemple, Damping description involving fractional operators, Mech. Syst. Signal Proc., 1991, 5, 81–88. doi: 10.1016/0888-3270(91)90016-X |
[12] | R. Gorenflo, Abel Integral Equations with Special Emphasis on Applications, Lectures Math. Sci. vol. 13, University of Tokyo, 1996. |
[13] | S. B. Hadid, Local and global existence theorems on differential equations of non-integer order, J. Fract. Calc. , 1995, 7, 101–105. |
[14] | D. Hainaut, A mutually exciting rough jump-diffusion for financial modelling, Frac. Cal. Appl. Anal., 2024, 1–34. |
[15] | J. K. Hale and S. Verduyn, Introduction to Functional Differential Equations, Appl. Math. Sci., 99, Springer-Verlag, New York, 1993. |
[16] | H. Hassani, P. Agarwal, Z. Avazzadeh, J. A. Machado, S. Mehrabi and E. Naraghirad, Optimal solution of a fractional epidemic model of COVID-19, Nonlinear Studies, 2024, 31(1). |
[17] | R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. |
[18] | R. W. Ibrahim, Existence and uniquness of holomographyic solutions for fractinal Cauchy problem, J. Math. Anal. Appl., 2011, 380, 232–240. doi: 10.1016/j.jmaa.2011.03.001 |
[19] | T. Kanwal, A. Hussain, I. Avcı, S. Etemad, S. Rezapour and D. F. M. Torres, Dynamics of a model of polluted lakes via fractal–fractional operators with two different numerical algorithms, Chaos, Solitons & Fractals, 2024, 181, 114653. |
[20] | A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Vol. 204 of North-Holland Mathematics Studies, Elsevier, Amesterdam, 2006. |
[21] | M. Kirane and N.-E. Tatar, Nonexistence of solutions to a hyperbolic equation with a time fractional damping, Z. Anal. Anwend, (J. Anal. Appl.), 2006, 25, 131–142. doi: 10.4171/zaa/1281 |
[22] | E. Lutz, Fractional Langevin equation, Phys. Rev. E, 2001, 64, 051106. doi: 10.1103/PhysRevE.64.051106 |
[23] | I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering. vol. 198, New York/London, Springer, 1999. |
[24] | R. Rizwan, Existence theory and stability analysis of fractional langevin equation, Int. J. Nonlinear Sci. Numer. Simul., 2019, 20, 833–848. doi: 10.1515/ijnsns-2019-0053 |
[25] | R. Rizwan and A. Zada, Nonlinear impulsive Langevin equations with mixed derivatives, Math. Meth. Appl. Sci., 2020, 43, 427–442. doi: 10.1002/mma.5902 |
[26] | S. G. Samko, A. A. Kilbas and O. I Marichev, Fractional Integrals and Derivatives: Theory and Applications, Amesterdam: Gordon and Breach, 1993. |
[27] | A. Shit and S. N. Bora, ESR fractional model with non-zero uniform average blood velocity, Comput. Appl. Math., 2022, 41(8), 354. doi: 10.1007/s40314-022-02072-1 |
[28] | C. A. Tudor, The overdamped generalized Langevin equation with Hermite noise, Frac. Cal. Appl. Anal., 2023, 26(3), 1082–1103. doi: 10.1007/s13540-023-00153-4 |
[29] |
J. Vanterler da C. Sousa and E. Capelas De Oliveira, Leibniz type rule: $\psi$-Hilfer fractional operator, Commun. Nonlinear Sci. Numer. Simul., 2019, 77, 305–311.
$\psi$-Hilfer fractional operator" target="_blank">Google Scholar |
[30] |
J. Vanterler da C. Sousa and E. Capelas De Oliveira, On the $\psi$-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 2018, 60, 72–91.
$\psi$-Hilfer fractional derivative" target="_blank">Google Scholar |
[31] | J. Vanterler da C. Sousa, N. N. Magnun dos Satnos, L. A. Magna and E. Capelas de Oliveira, A new approach to the validation of an ESR fractional model, Comput. Appl. Math., 2021, 40, 1–20. |
[32] | B. Zhang, R. Majeed and M. Alam, On fractional Langevin equations with stieltjes integral conditions, Math., 2022, 10, 3877. |
[33] | S. Zhang, Positive solutions for boundary-value problems of nonlinear fractional equations, Electron. J. Diff. Equ., 2006, 36, 12. |