Citation: | R. P. Agarwal, E. Azroul, N. Kamali, M. Shimi. ON A CLASS OF $ p(x,\cdot)$ -INTEGRO-DIFFERENTIAL KIRCHHOFF-TYPE PROBLEM WITH SINGULAR KERNEL[J]. Journal of Applied Analysis & Computation, 2025, 15(1): 333-353. doi: 10.11948/20240104 |
In this paper, we consider a class of $ p(x, \cdot)$-integro-differential Kirchhoff-type problem with Dirichlet boundary conditions. Considering various variational methods, we establish the existence of multiple solutions taking into account the different situations concerning the non-linearity and growth conditions.
[1] | G. Alberti, G. Bouchitté and P. Seppecher, Phase transition with the line‐tension effect, Arch. Ration. Mech. Anal., 1998, 144(1), 1–46. doi: 10.1007/s002050050111 |
[2] | A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 1973, 14(4), 349–381. doi: 10.1016/0022-1236(73)90051-7 |
[3] | E. Azroul, A. Benkirane, N. T. Chung and M. Shimi, Existence results for anisotropic fractional $\left( p_1\left( x,\cdot \right) ,p_2\left( x,\cdot \right)\right) $-Kirchhoff type problems, J. Appl. Anal. Comput., 2021, 11(5), 1–24. |
[4] |
E. Azroul, A. Benkirane and M. Shimi, Eigenvalue problems involving the fractional $p(x)$-Laplacian operator, Adv. Oper. Theory, 2019, 4(2), 539–555. doi: 10.15352/aot.1809-1420
CrossRef $p(x)$-Laplacian operator" target="_blank">Google Scholar |
[5] | E. Azroul, A. Benkirane and M. Shimi, General fractional Sobolev space with variable exponent and applications to nonlocal problems, Adv. Oper. Theory, 2020, 4(4), 1512–1540. |
[6] | E. Azroul, A. Benkirane and M. Shimi, Nonlocal eigenvalue problems with variable exponent, Moroc. J. Pure Appl. Anal., 2018, 4(1), 46–61. doi: 10.1515/mjpaa-2018-0006 |
[7] |
E. Azroul, A. Benkirane, M. Shimi and M. Srati, On a class of fractional $p(x)$-Kirchhoff type problems, Applicable Analysis, 2021, 100(2), 383–402. doi: 10.1080/00036811.2019.1603372
CrossRef $p(x)$-Kirchhoff type problems" target="_blank">Google Scholar |
[8] | E. Azroul, A. Benkirane and M. Srati, Three solutions for a Kirchhoff-type problem involving nonlocal fractional $p$-Laplacian, Adv. Oper. Theory, 2019, 4(4), 821–835. doi: 10.15352/aot.1901-1464 |
[9] | A. Bahrouni and V. D. Rădulescu, On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent, Discrete Contin. Dyn. Syst. Ser. S, 2018, 11(3), 379–389. |
[10] | P Biler, G Karch and R Monneau, Nonlinear diffusion of dislocation density and self-similar solutions, Comm. Math. Phys., 2010, 294(1), 145–168. doi: 10.1007/s00220-009-0855-8 |
[11] | L. M. M. Bonaldo, E. J. Hurtado and O. H. Miyagaki, A class of elliptic equations involving nonlocal integrodifferential operators with sign-changing weight functions, Journal of Mathematical Physics, 2020, 61(5). |
[12] | Y. Chen, S Levine and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 2006, 66(5), 1383–1406. |
[13] |
N. T. Chung, Multiplicity results for a class of $ p (x) $-Kirchhoff type equations with combined nonlinearities, Electron. J. Qual. Theory Differ. Equ., 2012, 2012(42), 1–13.
$ p (x) $-Kirchhoff type equations with combined nonlinearities" target="_blank">Google Scholar |
[14] |
F. J. S. A. Corrêa and G. M. Figueiredo, On an elliptic equation of $p$-Kirchhoff type via variational methods, Bull. Aust. Math. Soc., 2006, 74(2), 263–277. doi: 10.1017/S000497270003570X
CrossRef $p$-Kirchhoff type via variational methods" target="_blank">Google Scholar |
[15] |
F. J. S. A. Corrêa and G. M. Figueiredo, On a $p$-Kirchhoff equation via Krasnoselskii's genus, Appl. Math. Lett., 2009, 22(6), 819–822. doi: 10.1016/j.aml.2008.06.042
CrossRef $p$-Kirchhoff equation via Krasnoselskii's genus" target="_blank">Google Scholar |
[16] |
G. Dai and R. Hao, Existence of solutions for a $p (x)$-Kirchhoff-type equation, J. Math. Anal. Appl., 2009, 359(1), 275–284. doi: 10.1016/j.jmaa.2009.05.031
CrossRef $p (x)$-Kirchhoff-type equation" target="_blank">Google Scholar |
[17] | L. Del Pezzo and J. D. Rossi, Traces for fractional Sobolev spaces with variable exponents, Adv. Oper. Theory, 2017, 2(4), 435–446. |
[18] | E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 2012, 136(5), 521–573. doi: 10.1016/j.bulsci.2011.12.004 |
[19] | L. Diening, P. Harjulehto, P. Hästö and M. Råužička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, 2017. |
[20] | M. Dreher, The kirchhoff equation for the $p$-Laplacian, Rend. Semin. Mat. Univ. Politec. Torino, 2006, 64(2), 217–238. |
[21] |
X. L. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$, J. Math. Anal. Appl., 2001, 263(2), 424–446. doi: 10.1006/jmaa.2000.7617
CrossRef $L^{p(x)}(\Omega)$ and |
[22] | A. Fiscella and E. Valdinoci, A critical Kirchhoff type problem involving a nonlocal operator, Nonlinear Anal., 2014, 96, 156–170. |
[23] | Y. Jia, Y. Gao and G. Zhang, Solutions for the Kirchhoff type equations with fractional Laplacian, J. Appl. Anal. Comput., 2020, 10(6), 2704–2710. |
[24] | U. Kaufmann, J. D. Rossi and R. E. Vidal, Fractional Sobolev spaces with variable exponents and fractional $p (x)$-Laplacians, Electron. J. Qual. Theory Differ. Equ., 2017, 2017(76), 1–10. |
[25] | G. Kirchhoff and K. Hensel, Vorlesungen Über Mathematische Physik, Bull. Sci. Math., 1883. |
[26] |
O. Kováčik and J. Rákosník, On Spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$, Czechoslovak Math. Jour., 1991, 41(4), 592–618,
$L^{p(x)}(\Omega)$ and |
[27] | M. Kurzke, A nonlocal singular perturbation problem with periodic well potential, ESAIM Control Optim. Calc. Var., 2006, 12(1), 52–63. |
[28] | S. Liang, G. M. Bisci and B. Zhang, Sign-changing solutions for Kirchhoff-type problems involving variable-order fractional Laplacian and critical exponents, Nonlinear Anal. Model. Control, 2022, 27(3), 556–575. |
[29] | J. L. Lions, On some questions in boundary value problems of mathematical physics, North-Holland Math. Stud., 1978, 30, 284–346. |
[30] | M. Ruzicka, Electrorheological Fluids: Modeling and Mathematical Theory, Springer, 2007. |
[31] | R. Servadei and E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 2012, 389(2), 887–898. |
[32] | M. Willem, Minimax Theorems, pringer Science & Business Media, 2012. |
[33] | M. Xiang, D. Hu, B. Zhang and Y. Wang, Multiplicity of solutions for variable-order fractional Kirchhoff equations with nonstandard growth, J. Math. Anal. Appl., 2020, 501(1). |
[34] | M. Xiang, B. Zhang and M. Ferrara, Multiplicity results for the non-homogeneous fractional p-Kirchhoff equations with concave–convex nonlinearities, Proc. R. Soc. A Math. Phys. Eng. Sci., 2015, 471, 2177. |
[35] | Q. Zhang and C. Zhao, Existence of strong solutions of a $p(x)$-Laplacian Dirichlet problem without the Ambrosetti-Rabinowitz condition, Comput. Math. Appl., 2015, 69(1), 1–12. |
[36] | J. Zuo, D. Choudhuri and D. D. Repov$ {\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over s} }}$, On critical variable-order Kirchhoff type problems with variable singular exponent, J. Math. Anal. Appl., 2022, 514(1), 126264. |