2025 Volume 15 Issue 1
Article Contents

Jingping Lu, Chunyong Wang, Wentao Huang, Qinlong Wang. HOPF AND ZERO-HOPF BIFURCATIONS FOR A CLASS OF CUBIC KOLMOGOROV SYSTEMS IN $ \mathbb R^{3}$[J]. Journal of Applied Analysis & Computation, 2025, 15(1): 354-372. doi: 10.11948/20240108
Citation: Jingping Lu, Chunyong Wang, Wentao Huang, Qinlong Wang. HOPF AND ZERO-HOPF BIFURCATIONS FOR A CLASS OF CUBIC KOLMOGOROV SYSTEMS IN $ \mathbb R^{3}$[J]. Journal of Applied Analysis & Computation, 2025, 15(1): 354-372. doi: 10.11948/20240108

HOPF AND ZERO-HOPF BIFURCATIONS FOR A CLASS OF CUBIC KOLMOGOROV SYSTEMS IN $ \mathbb R^{3}$

  • Author Bio: Email: lujingbaby520@163.com(J. Lu); Email: wangchunyong@163.com(C. Wang); Email: huangwentao@163.com(W. Huang)
  • Corresponding author: Email: wqinlong@163.com(Q. Wang)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (12161023, 12061016) and the Basic Ability Enhancement Program for Young and Middle-aged Teachers of Guangxi (No. 2022KY0254) and Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation, Center for Applied Mathematics of Guangxi (GUET) and Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation
  • In this paper, Hopf and zero-Hopf bifurcations are investigated for a class of three-dimensional cubic Kolmogorov systems with one positive equilibrium. Firstly, by computing the singular point quantities and figuring out center conditions, we determined that the highest order of the positive equilibrium is eight as a fine focus, which yields Hopf cyclicity eight at the positive equilibrium. Secondly, by extending the normal form method, we discuss the existence of multiple periodic solutions via zero-Hopf bifurcation around the positive equilibrium. At the same time, the relevance between zero-Hopf bifurcation and Hopf bifurcation is analyzed via its special case, which are rarely studied in detail.

    MSC: 34C23, 34C28, 34C40, 37G15
  • 加载中
  • [1] A. Buicǎ, I. García and S. Maza, Multiple Hopf bifurcation in ${\mathbb R}^3$ and inverse Jacobi multipliers, J. Diff. Eqs., 2014, 256, 310–325. doi: 10.1016/j.jde.2013.09.006

    CrossRef ${\mathbb R}^3$ and inverse Jacobi multipliers" target="_blank">Google Scholar

    [2] M. Candido and J. Llibre, Zero-Hopf bifurcations in 3-dimensional differential systems with no equilibria, Math. Comput. Simulat., 2018, 151, 54–76. doi: 10.1016/j.matcom.2018.03.008

    CrossRef Google Scholar

    [3] J. Chavarriga, H. Giacomini, J. Giné and J. Llibre, Darboux integrability and the inverse integrating factor, J. Diff. Eqs., 2003, 194(1), 116–139. doi: 10.1016/S0022-0396(03)00190-6

    CrossRef Google Scholar

    [4] E. Diz-Pita, J. Llibre, M. Victoria Otero-Espinar and C. Valls, The zero-Hopf bifurcations in the Kolmogorov systems of degree 3 in $\mathbb R^3$, Commun. Nonlinear Sci. Numer. Simulat., 2021, 95, 105621. doi: 10.1016/j.cnsns.2020.105621

    CrossRef $\mathbb R^3$" target="_blank">Google Scholar

    [5] C. Du and W. Huang, Center-focus problem and limit cycles bifurcations for a class of cubic Kolmogorov model, Nonlinear Dyn., 2013, 72, 197–206. doi: 10.1007/s11071-012-0703-9

    CrossRef Google Scholar

    [6] C. Du, Q. Wang and W. Huang, Three-dimensional Hopf bifurcation for a class of cubic Kolmogorov model, Int. J. Bifur. Chaos, 2014, 24, 1450036. doi: 10.1142/S0218127414500369

    CrossRef Google Scholar

    [7] V. Edneral, A. Mahdi, V. G. Romanovskic and D. Shafer, The center problem on a center manifold in ${\mathbb R}^3$, Nonlinear Anal. Real World Appl., 2012, 75, 2614–2622.

    ${\mathbb R}^3$" target="_blank">Google Scholar

    [8] I. García, S. Maza and D. Shafer, Cyclicity of polynomial nondegenerate centers on center manifolds, J. Diff. Eqs., 2018, 265, 5767–5808. doi: 10.1016/j.jde.2018.07.019

    CrossRef Google Scholar

    [9] J. Gu, A. Zegeling and W. Huang, Bifurcation of limit cycles and isochronous centers on center manifolds for a class of cubic Kolmogorov systems in $R^{3}$, Qual. Theory Dyn. Syst., 2023, 22, 42. doi: 10.1007/s12346-023-00745-8

    CrossRef $R^{3}$" target="_blank">Google Scholar

    [10] M. Han and P. Yu, Normal Forms, Melnikov Functions and Bifurcations of Limit Cycles, New York, Springer, 2012.

    Google Scholar

    [11] B. Hassard, N. Kazarinoff and Y. Wan, Theory and Application of Hopf Bifurcation, Cambridge, Cambridge University Press, 1981.

    Google Scholar

    [12] D. He, W. Huang and Q. Wang, Small amplitude limit cycles and local bifurcation of critical periods for a quartic Kolmogorov system, Qual. Theory Dyn. Syst., 2020, 19, 68. doi: 10.1007/s12346-020-00401-5

    CrossRef Google Scholar

    [13] M. Hirsch, Systems of differential equations that are competitive or cooperative, V: Convergence in 3-dimensional systems, J. Diff. Eqs., 1989, 80, 94–106. doi: 10.1016/0022-0396(89)90097-1

    CrossRef Google Scholar

    [14] W. Huang, Q. Wang and A. Chen, Hopf bifurcation and the centers on center manifold for a class of three-dimensional circuit system, Math. Methods Appl. Sci., 2020, 43(4), 1988–2000. doi: 10.1002/mma.6026

    CrossRef Google Scholar

    [15] A. Kolmogorov, Sulla teoria di volterra della lotta per l'esistenza, Gi. Inst. Ital. Attuari, 1936, 7, 74–80.

    Google Scholar

    [16] F. Li, Y. Liu, Y. Liu and P. Yu, Complex isochronous centers and linearization transformations for cubic $Z_2$ equivariant planar systems, J. Diff. Eqs., 2020, 268, 3819–3847. doi: 10.1016/j.jde.2019.10.011

    CrossRef $Z_2$ equivariant planar systems" target="_blank">Google Scholar

    [17] Y. Liu and J. Li, Theory of values of singular point in complex autonomous differential system, Sci. China Ser. A, 1990, 33, 10–24.

    Google Scholar

    [18] J. Llibre and K. Ammar, Zero-Hopf periodic orbits for a Rössler differential system, Int. J. Bifur. Chaos, 2020, 12, 2050170.

    Google Scholar

    [19] N. Lloyd, J. Pearson, E. Sáez and I. Szántó, Limit cycles of a cubic Kolmogorov system, Appl. Math. Lett., 1996, 9, 15–18.

    Google Scholar

    [20] J. Lu, C. Wang, W. Huang and Q. Wang, Local bifurcation and center problem for a more generalized Lorenz system, Qual. Theory Dyn. Syst., 2022, 21(4), 96. doi: 10.1007/s12346-022-00629-3

    CrossRef Google Scholar

    [21] D. Rodrigo and J. Llibre, Zero-Hopf bifurcation in a Chua system, Nonlinear Anal. Real World Appl., 2017, 37, 31–40. doi: 10.1016/j.nonrwa.2017.02.002

    CrossRef Google Scholar

    [22] V. G. Romanovski, Y. Xia and X. Zhang, Varieties of local integrability of analytic differential systems and their applications, J. Diff. Eqs., 2014, 257, 3079–3101. doi: 10.1016/j.jde.2014.06.007

    CrossRef Google Scholar

    [23] Y. Tian and P. Yu, An explicit recursive formula for computing the normal form and center manifold of n-dimensional differential systems associated with Hopf bifurcation, Int. J. Bifur. Chaos, 2013, 23, 1350104. doi: 10.1142/S0218127413501046

    CrossRef Google Scholar

    [24] Y. Tian and P. Yu, An explicit recursive formula for computing the normal forms associated with semisimple cases, Commun. Nonlinear Sci., 2014, 19(7), 2294–2308. doi: 10.1016/j.cnsns.2013.11.019

    CrossRef Google Scholar

    [25] Q. Wang, W. Huang and J. Feng, Multiple limit cycles and centers on center manifolds for Lorenz system, Appl. Math. Comput., 2014, 238, 281–288.

    Google Scholar

    [26] Q. Wang, W. Huang and B. Li, Limit cycles and singular point quantities for a 3D Lotka-Volterra system, Appl. Math. Comput., 2011, 217, 8856–8859.

    Google Scholar

    [27] Q. Wang, Y. Liu and H. Chen, Hopf bifurcation for a class of three-dimensional nonlinear dynamic systems, Bull. Sci. Math., 2010, 134, 786–798. doi: 10.1016/j.bulsci.2009.12.001

    CrossRef Google Scholar

    [28] Y. Ye and W. Ye, Cubic Kolmogorov systems with two limit cycles surrounding the same focus, Ann. Differ. Equ., 1985, 1, 201–207.

    Google Scholar

    [29] P. Yu, Computation of normal forms via a perturbation technique, J. Sound Vib., 1998, 211(1), 19–38. doi: 10.1006/jsvi.1997.1347

    CrossRef Google Scholar

    [30] P. Yu, M. Han and D. Xiao, Four small limit cycles around a Hopf singular point in 3-dimensional competitive Lotka-Volterra systems, J. Math. Anal. Appl., 2016, 436(1), 521–555. doi: 10.1016/j.jmaa.2015.12.002

    CrossRef Google Scholar

    [31] P. Yu and Y. Yuan, The simplest normal form for the singularity of a pure imaginary pair and a zero eigenvalue, Dyn. Cont. Discr. Impuls. Syst. Ser. B, 2001, 8, 219–249.

    Google Scholar

    [32] B. Zeng and P. Yu, Analysis of zero-Hopf bifurcation in two Rössler systems using normal form theory, Int. J. Bifur. Chaos, 2020, 16, 2030050.

    Google Scholar

Figures(3)

Article Metrics

Article views(639) PDF downloads(227) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint