Citation: | John R. Graef, Shapour Heidarkhani, Lingju Kong, Shahin Moradi. EXISTENCE RESULTS FOR A NONLINEAR ELLIPTIC PROBLEM DRIVEN BY A NON-HOMOGENEOUS OPERATOR[J]. Journal of Applied Analysis & Computation, 2025, 15(1): 547-563. doi: 10.11948/20240147 |
In this paper, the authors discuss the existence of at least one weak solution and infinitely many weak solutions to a parametric nonlinear Dirichlet problem involving a nonhomogeneous differential operator of $ p $-Laplacian type. Their approach is based on variational methods. Some recent results are extended and improved, and an example is presented to demonstrate the application of the main results.
[1] | G. A. Afrouzi, M. Bohner, G. Caristi, S. Heidarkhani and S. Moradi, An existence result for impulsive multi-point boundary value systems using a local minimization principle, J. Optim. Theo. Appl., 2018, 177, 1–20. doi: 10.1007/s10957-018-1253-1 |
[2] | D. Barilla, M. Bohner, S. Heidarkhani and S. Moradi, Existence results for dynamic Sturm-Liouville boundary value problems via variational methods, Appl. Math. Comput., 2021, 409, 125614, 10 pp. |
[3] | G. Bonanno, Some remarks on a three critical points theorem, Nonlinear Anal., 2021, 54, 651–665. |
[4] | G. Bonanno and P. Candito, Infinitely many solutions for a class of discrete non-linear boundary value problems, Appl. Anal., 2009, 88, 605–616. doi: 10.1080/00036810902942242 |
[5] | G. Bonanno, G. D'Aguì and R. Livrea, Triple solutions for nonlinear elliptic problems driven by a non-homogeneous operator, Nonlinear Anal., 2020, 197, 111862, 17 pp. doi: 10.1016/j.na.2020.111862 |
[6] | G. Bonanno and G. Molica Bisci, Infinitely many solutions for a boundary value problem with discontinuous nonlinearities, Bound. Value Probl., 2009, 2009, 670675, 20 pp. |
[7] | C. Chen and H. Wang, Ground state solutions for singular p-Laplacian equation in $\mathbb{R}^N$, J. Math. Anal. Appl., 2009, 351, 773–780. doi: 10.1016/j.jmaa.2008.11.010 |
[8] | F. Colasuonno and P. Pucci, Multiplicity of solutions for p(x)-polyharmonic elliptic Kirchhoff equations, Nonlinear Anal., 2011, 74, 5962–5974. doi: 10.1016/j.na.2011.05.073 |
[9] | F. Colasuonno, P. Pucci and R. Varga, Multiple solutions for an eigenvalue problem involving p-Laplacian type operators, Nonlinear Anal., 2012, 75, 4496–4512. doi: 10.1016/j.na.2011.09.048 |
[10] | F. Demengel and E. Hebey, On some nonlinear equations involving the p-Laplacian with critical Sobolev growth, Adv. Differ. Equ., 1998, 3, 533–574. |
[11] | Y. Deng and H. Pi, Multiple solutions for p-harmonic type equations, Nonlinear Anal., 2009, 71, 4952–4959. doi: 10.1016/j.na.2009.03.067 |
[12] | M. Galewski and G. Molica Bisci, Existence results for one-dimensional fractional equations, Math. Meth. Appl. Sci., 2016, 39, 1480–1492. doi: 10.1002/mma.3582 |
[13] | J. R. Graef, S. Heidarkhani and L. Kong, Infinitely many solutions for systems of Sturm-Liouville boundary value problems, Results Math., 2014, 66, 327–341. doi: 10.1007/s00025-014-0379-1 |
[14] | J. R. Graef, S. Heidarkhani, L. Kong and S. Moradi, On an anisotropic discrete boundary value problem of Kirchhoff type, J. Differ. Equ. Appl., 2021, 27, 1103–1119. doi: 10.1080/10236198.2021.1968847 |
[15] | S. Heidarkhani, Infinitely many solutions for systems of n two-point boundary value Kirchhoff-type problems, Ann. Polon. Math., 2013, 107, 133–152. doi: 10.4064/ap107-2-3 |
[16] | S. Heidarkhani, G. A. Afrouzi, S. Moradi, G. Caristi and B. Ge, Existence of one weak solution for p(x)-biharmonic equations with Navier boundary conditions, Z. Angew. Math. Phys., 2016, 67, 1–13. doi: 10.1007/s00033-015-0604-0 |
[17] | S. Heidarkhani, Y. Zhao, G. Caristi, G. A. Afrouzi and S. Moradi, Infinitely many solutions for perturbed impulsive fractional differential systems, Appl. Anal., 2017, 96, 1401–1424. doi: 10.1080/00036811.2016.1192147 |
[18] | A. Kristály, H. Lisei and C. Varga, Multiple solutions for p-Laplacian type equations, Nonlinear Anal., 2008, 68, 1375–1381. doi: 10.1016/j.na.2006.12.031 |
[19] | P. D. Nápoli and M. C. Mariani, Mountain pass solutions to equations of p-Laplacian type, Nonlinear Anal., 2003, 54, 1205–1219. doi: 10.1016/S0362-546X(03)00105-6 |
[20] | P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. Math., 1986, 65, Amer. Math. Soc., Providence, RI. |
[21] | B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math., 2000, 113, 401–410. doi: 10.1016/S0377-0427(99)00269-1 |
[22] | G. Talenti, Best constants in Sobolev inequality, Ann. Mat. Pura Appl., 1976, 110, 353–372. doi: 10.1007/BF02418013 |