2025 Volume 15 Issue 2
Article Contents

Nisar Gul, Haibo Chen, Rasool Shah, Amjid Ali. SIMPSON’S THREE-EIGHTHS APPROACH FOR COMPUTING SOLUTIONS OF ABSOLUTE VALUE EQUATIONS NUMERICALLY[J]. Journal of Applied Analysis & Computation, 2025, 15(2): 862-875. doi: 10.11948/20240179
Citation: Nisar Gul, Haibo Chen, Rasool Shah, Amjid Ali. SIMPSON’S THREE-EIGHTHS APPROACH FOR COMPUTING SOLUTIONS OF ABSOLUTE VALUE EQUATIONS NUMERICALLY[J]. Journal of Applied Analysis & Computation, 2025, 15(2): 862-875. doi: 10.11948/20240179

SIMPSON’S THREE-EIGHTHS APPROACH FOR COMPUTING SOLUTIONS OF ABSOLUTE VALUE EQUATIONS NUMERICALLY

  • In this study, we propose a two-step iterative procedure for solving absolute value equations. The method includes Simpson's Three-Eighths formula with five points as a corrector step and generalized Newton's approach as a predictor step. For solving large systems, this method is very effective because it is very simple. Moreover, we show the convergence analysis under certain conditions using different theorems. We conducted numerical experiments to examine the efficiency of the presented technique.

    MSC: 65F10, 65H10
  • 加载中
  • [1] L. Abdallah, M. Haddou and T. Migot, Solving absolute value equation using complementarity and smoothing functions, Journal of Computational and Applied Mathematics, 2018, 327, 196-207. doi: 10.1016/j.cam.2017.06.019

    CrossRef Google Scholar

    [2] Z. Z. Bai, Modulus based matrix splitting iteration methods for linear complementarity problems, Numerical Linear Algebra with Applications, 2010, 17(6), 917-933. doi: 10.1002/nla.680

    CrossRef Google Scholar

    [3] L. Caccetta, B. Qu and G. Zhou, A globally and quadratically convergent method for absolute value equations, Computational Optimization and Applications, 2011, 48, 45-58. doi: 10.1007/s10589-009-9242-9

    CrossRef Google Scholar

    [4] C. Chen, D. Yu and D. Han, Optimal parameter for the SOR-like iteration method for solving the system of absolute value equations, 2021. arXiv: 05781.

    Google Scholar

    [5] X. Dong, X. H. Shao and H. L. Shen, A new SOR-like method for solving absolute value equations, Applied Numerical Mathematics, 2020, 156, 410-421. doi: 10.1016/j.apnum.2020.05.013

    CrossRef Google Scholar

    [6] V. Edalatpour, D. Hezari and D. K. Salkuyeh, A generalization of the Gauss–Seidel iteration method for solving absolute value equations, Applied Mathematics and Computation, 2017, 293, 156-167. doi: 10.1016/j.amc.2016.08.020

    CrossRef Google Scholar

    [7] A. J. Fakharzadeh and N. N. Shams, An efficient algorithm for solving absolute value equations, J. Math. Extension, 2021, 15, 1-23.

    Google Scholar

    [8] J. Feng and S. Liu, An improved generalized Newton method for absolute value equations, Springer Plus, 2016, 5, 1042. DOI: 10.1186/s40064-016-2720-5.

    CrossRef Google Scholar

    [9] N. Gul, H. Chen, J. Iqbal and R. Shah, A new two-step iterative technique for efficiently solving absolute value equations, Engineering Computations, 2024.

    Google Scholar

    [10] P. Guo, S. L. Wu and C. X. Li, On the SOR-like iteration method for solving absolute value equations, Applied Mathematics Letters, 2019, 97, 107-113. doi: 10.1016/j.aml.2019.03.033

    CrossRef Google Scholar

    [11] F. K. Haghani, On generalized Traub’s method for absolute value equations, J. Optim. Theory. Appl., 2015, 166, 619-625. doi: 10.1007/s10957-015-0712-1

    CrossRef Google Scholar

    [12] S. L. Hu and Z. H. Huang, A note on absolute value equations, Optimization Letters, 2010, 4(3), 417-424. doi: 10.1007/s11590-009-0169-y

    CrossRef Google Scholar

    [13] J. Iqbal, A. Iqbal and M. Arif, Levenberg-Marquardt method for solving systems of absolute value equations, J. Comput. Appl. Math., 2015, 282, 134-138. doi: 10.1016/j.cam.2014.11.062

    CrossRef Google Scholar

    [14] Y. Ke, The new iteration algorithm for absolute value equation, Applied Mathematics Letters, 2020, 99, 105990. doi: 10.1016/j.aml.2019.07.021

    CrossRef Google Scholar

    [15] Y. F. Ke and C. F. Ma, SOR-like iteration method for solving absolute value equations, Applied Mathematics and Computation, 2017, 311, 195-202. doi: 10.1016/j.amc.2017.05.035

    CrossRef Google Scholar

    [16] C. X. Li, A preconditioned AOR iterative method for the absolute value equations, Int. J. Comput. Methods, 2017, 14, 1-12.

    Google Scholar

    [17] O. L. Mangasarian, A generalized Newton method for absolute value equations, Optim Lett., 2009, 3, 101-108. doi: 10.1007/s11590-008-0094-5

    CrossRef Google Scholar

    [18] O. L. Mangasarian and R. R. Meyer, Absolute value equation, Linear. Algebra. Appl., 2006, 419, 359-367. doi: 10.1016/j.laa.2006.05.004

    CrossRef Google Scholar

    [19] M. Mansoori and A. Erfanian, Dynamic model to solve the absolute value equations, J. Comput. Appl. Math., 2018, 333, 28-35. doi: 10.1016/j.cam.2017.09.032

    CrossRef Google Scholar

    [20] M. A. Noor, J. Iqbal, S. Khattri and E. Al-Said, A new iterative method for solving absolute value equations, Inter. J. Phy. Sci., 2011, 6(7), 1793-1797.

    Google Scholar

    [21] M. A. Noor, J. Iqbal, K. I. Noor and E. Al-Said, On an iterative method for solving absolute value equations, Optim. Lett., 2012, 6, 1027-1033. doi: 10.1007/s11590-011-0332-0

    CrossRef Google Scholar

    [22] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Society for Industrial and Applied Mathematics, 2000.

    Google Scholar

    [23] B. T. Polyak, Introduction to Optimization, Optimization Software, Inc., Publications Division, New York, 1987,

    Google Scholar

    [24] O. Prokopyev, On equivalent reformulations for absolute value equations, Computational Optimization and Applications, 2009, 44, 363-372. doi: 10.1007/s10589-007-9158-1

    CrossRef Google Scholar

    [25] J. Rohn, A theorem of the alternatives for the equation $Ax + B|x|= b$, Linear. Multilinear. Algebra., 2004, 52, 421-426. doi: 10.1080/0308108042000220686

    CrossRef Google Scholar

    [26] J. Rohn, V. Hooshyarbakhsh and R. Farhadsefat, An iterative method for solving absolute value equations and sufficient conditions for unique solvability, Optimization Letters, 2014, 8, 35-44. doi: 10.1007/s11590-012-0560-y

    CrossRef Google Scholar

    [27] B. Saheya, C. H. Yu and J. S. Chen, Numerical comparisons based on four smoothing functions for absolute value equation, Journal of Applied Mathematics and Computing, 2018, 56, 131-149. doi: 10.1007/s12190-016-1065-0

    CrossRef Google Scholar

    [28] D. K. Salkuyeh, The Picard–HSS iteration method for absolute value equations, Optimization Letters, 2014, 8, 2191-2202. doi: 10.1007/s11590-014-0727-9

    CrossRef Google Scholar

    [29] S. L. Wu and C. X. Li, A special shift splitting iteration method for absolute value equation, AIMS. Math., 2020, 5, 5171-5183. doi: 10.3934/math.2020332

    CrossRef Google Scholar

    [30] L. Yong, S. Liu, Q. Feng and T. Zhou, Hybrid differential evolution with biogeography-based optimization for absolute value equation, Journal of Information and Computational Science, 2013, 10(8), 2417-2428. doi: 10.12733/jics20101691

    CrossRef Google Scholar

    [31] N. Zainali and T. Lotfi, On developing a stable and quadratic convergent method for solving absolute value equation, Journal of Computational and Applied Mathematics, 2018, 330, 742-747. doi: 10.1016/j.cam.2017.07.009

    CrossRef Google Scholar

Tables(5)

Article Metrics

Article views(381) PDF downloads(219) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint