Citation: | Nisar Gul, Haibo Chen, Rasool Shah, Amjid Ali. SIMPSON’S THREE-EIGHTHS APPROACH FOR COMPUTING SOLUTIONS OF ABSOLUTE VALUE EQUATIONS NUMERICALLY[J]. Journal of Applied Analysis & Computation, 2025, 15(2): 862-875. doi: 10.11948/20240179 |
In this study, we propose a two-step iterative procedure for solving absolute value equations. The method includes Simpson's Three-Eighths formula with five points as a corrector step and generalized Newton's approach as a predictor step. For solving large systems, this method is very effective because it is very simple. Moreover, we show the convergence analysis under certain conditions using different theorems. We conducted numerical experiments to examine the efficiency of the presented technique.
[1] | L. Abdallah, M. Haddou and T. Migot, Solving absolute value equation using complementarity and smoothing functions, Journal of Computational and Applied Mathematics, 2018, 327, 196-207. doi: 10.1016/j.cam.2017.06.019 |
[2] | Z. Z. Bai, Modulus based matrix splitting iteration methods for linear complementarity problems, Numerical Linear Algebra with Applications, 2010, 17(6), 917-933. doi: 10.1002/nla.680 |
[3] | L. Caccetta, B. Qu and G. Zhou, A globally and quadratically convergent method for absolute value equations, Computational Optimization and Applications, 2011, 48, 45-58. doi: 10.1007/s10589-009-9242-9 |
[4] | C. Chen, D. Yu and D. Han, Optimal parameter for the SOR-like iteration method for solving the system of absolute value equations, 2021. arXiv: 05781. |
[5] | X. Dong, X. H. Shao and H. L. Shen, A new SOR-like method for solving absolute value equations, Applied Numerical Mathematics, 2020, 156, 410-421. doi: 10.1016/j.apnum.2020.05.013 |
[6] | V. Edalatpour, D. Hezari and D. K. Salkuyeh, A generalization of the Gauss–Seidel iteration method for solving absolute value equations, Applied Mathematics and Computation, 2017, 293, 156-167. doi: 10.1016/j.amc.2016.08.020 |
[7] | A. J. Fakharzadeh and N. N. Shams, An efficient algorithm for solving absolute value equations, J. Math. Extension, 2021, 15, 1-23. |
[8] | J. Feng and S. Liu, An improved generalized Newton method for absolute value equations, Springer Plus, 2016, 5, 1042. DOI: 10.1186/s40064-016-2720-5. |
[9] | N. Gul, H. Chen, J. Iqbal and R. Shah, A new two-step iterative technique for efficiently solving absolute value equations, Engineering Computations, 2024. |
[10] | P. Guo, S. L. Wu and C. X. Li, On the SOR-like iteration method for solving absolute value equations, Applied Mathematics Letters, 2019, 97, 107-113. doi: 10.1016/j.aml.2019.03.033 |
[11] | F. K. Haghani, On generalized Traub’s method for absolute value equations, J. Optim. Theory. Appl., 2015, 166, 619-625. doi: 10.1007/s10957-015-0712-1 |
[12] | S. L. Hu and Z. H. Huang, A note on absolute value equations, Optimization Letters, 2010, 4(3), 417-424. doi: 10.1007/s11590-009-0169-y |
[13] | J. Iqbal, A. Iqbal and M. Arif, Levenberg-Marquardt method for solving systems of absolute value equations, J. Comput. Appl. Math., 2015, 282, 134-138. doi: 10.1016/j.cam.2014.11.062 |
[14] | Y. Ke, The new iteration algorithm for absolute value equation, Applied Mathematics Letters, 2020, 99, 105990. doi: 10.1016/j.aml.2019.07.021 |
[15] | Y. F. Ke and C. F. Ma, SOR-like iteration method for solving absolute value equations, Applied Mathematics and Computation, 2017, 311, 195-202. doi: 10.1016/j.amc.2017.05.035 |
[16] | C. X. Li, A preconditioned AOR iterative method for the absolute value equations, Int. J. Comput. Methods, 2017, 14, 1-12. |
[17] | O. L. Mangasarian, A generalized Newton method for absolute value equations, Optim Lett., 2009, 3, 101-108. doi: 10.1007/s11590-008-0094-5 |
[18] | O. L. Mangasarian and R. R. Meyer, Absolute value equation, Linear. Algebra. Appl., 2006, 419, 359-367. doi: 10.1016/j.laa.2006.05.004 |
[19] | M. Mansoori and A. Erfanian, Dynamic model to solve the absolute value equations, J. Comput. Appl. Math., 2018, 333, 28-35. doi: 10.1016/j.cam.2017.09.032 |
[20] | M. A. Noor, J. Iqbal, S. Khattri and E. Al-Said, A new iterative method for solving absolute value equations, Inter. J. Phy. Sci., 2011, 6(7), 1793-1797. |
[21] | M. A. Noor, J. Iqbal, K. I. Noor and E. Al-Said, On an iterative method for solving absolute value equations, Optim. Lett., 2012, 6, 1027-1033. doi: 10.1007/s11590-011-0332-0 |
[22] | J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Society for Industrial and Applied Mathematics, 2000. |
[23] | B. T. Polyak, Introduction to Optimization, Optimization Software, Inc., Publications Division, New York, 1987, |
[24] | O. Prokopyev, On equivalent reformulations for absolute value equations, Computational Optimization and Applications, 2009, 44, 363-372. doi: 10.1007/s10589-007-9158-1 |
[25] | J. Rohn, A theorem of the alternatives for the equation $Ax + B|x|= b$, Linear. Multilinear. Algebra., 2004, 52, 421-426. doi: 10.1080/0308108042000220686 |
[26] | J. Rohn, V. Hooshyarbakhsh and R. Farhadsefat, An iterative method for solving absolute value equations and sufficient conditions for unique solvability, Optimization Letters, 2014, 8, 35-44. doi: 10.1007/s11590-012-0560-y |
[27] | B. Saheya, C. H. Yu and J. S. Chen, Numerical comparisons based on four smoothing functions for absolute value equation, Journal of Applied Mathematics and Computing, 2018, 56, 131-149. doi: 10.1007/s12190-016-1065-0 |
[28] | D. K. Salkuyeh, The Picard–HSS iteration method for absolute value equations, Optimization Letters, 2014, 8, 2191-2202. doi: 10.1007/s11590-014-0727-9 |
[29] | S. L. Wu and C. X. Li, A special shift splitting iteration method for absolute value equation, AIMS. Math., 2020, 5, 5171-5183. doi: 10.3934/math.2020332 |
[30] | L. Yong, S. Liu, Q. Feng and T. Zhou, Hybrid differential evolution with biogeography-based optimization for absolute value equation, Journal of Information and Computational Science, 2013, 10(8), 2417-2428. doi: 10.12733/jics20101691 |
[31] | N. Zainali and T. Lotfi, On developing a stable and quadratic convergent method for solving absolute value equation, Journal of Computational and Applied Mathematics, 2018, 330, 742-747. doi: 10.1016/j.cam.2017.07.009 |