2025 Volume 15 Issue 2
Article Contents

Xue Zhang, Yusen Wu, Feng Li. CENTERS AND LIMIT CYCLE BIFURCATIONS IN A FAMILY OF PIECEWISE SMOOTH SEPTIC Z2-EQUIVARIANT SYSTEMS[J]. Journal of Applied Analysis & Computation, 2025, 15(2): 876-895. doi: 10.11948/20240193
Citation: Xue Zhang, Yusen Wu, Feng Li. CENTERS AND LIMIT CYCLE BIFURCATIONS IN A FAMILY OF PIECEWISE SMOOTH SEPTIC Z2-EQUIVARIANT SYSTEMS[J]. Journal of Applied Analysis & Computation, 2025, 15(2): 876-895. doi: 10.11948/20240193

CENTERS AND LIMIT CYCLE BIFURCATIONS IN A FAMILY OF PIECEWISE SMOOTH SEPTIC Z2-EQUIVARIANT SYSTEMS

  • In this paper, we investigate the center-focus problem and the number of limit cycles bifurcating from three foci for a family of piecewise smooth planar septic Z2-equivariant systems, which include (±1, 0) and infinity as their singularities. We achieve a comprehensive classification of the conditions under which (±1, 0) act as centers. Moreover, we rigorously prove that, under small Z2-equivariant perturbations, the perturbed system possesses at least 15 limit cycles, comprising 14 with small amplitude and 1 large amplitude with the scheme 1 ⊃ (7 ∪7).

    MSC: 34C07, 37C23
  • 加载中
  • [1] K. J. Ȧström, T. H. Lee, K. K. Tan and K. H. Johansson, Recent advances in relay feedback methods-a survey, Proc. IEEE Conf. Systems, Man and Cybernetics, 1995, 3, 2616-2621.

    Google Scholar

    [2] J. Badertscher, K. A. Cunefare and A. A. Ferri, Braking impact of normal dither signals, J. Vib. Acoust., 2007, 129(1), 17-23. doi: 10.1115/1.2346689

    CrossRef Google Scholar

    [3] S. Banerjee and G. Verghese, Nonlinear Phenomena in Power Electronics: Attractors, Bifurcations, Chaos, and Nonlinear Control, Wiley-IEEE Press, New York, 2001.

    Google Scholar

    [4] M. D. Bernardo, C. J. Budd and A. R. Champneys, Grazing, skipping and sliding: Analysis of the nonsmooth dynamics of the DC/DC buck converter, Nonlinearity, 1998, 11, 859-890. doi: 10.1088/0951-7715/11/4/007

    CrossRef Google Scholar

    [5] M. D. Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-Smooth Dynamical Systems, Theory and Appli-cations, Springer-Verlag, London, 2008.

    Google Scholar

    [6] M. D. Bernardo, M. I. Feigin, S. J. Hogan and M. E. Homer, Local analysis of C-bifurcations in n-dimensional piecewise-smooth dynamical systems, Chaos Solitons Fractals, 1999, 10(11), 1881-1908. doi: 10.1016/S0960-0779(98)00317-8

    CrossRef Google Scholar

    [7] M. D. Bernardo, P. Kowalczyk and A. B. Nordmark, Sliding bifurcations: A novel mechanism for the sudden onset of chaos in dry friction oscillators, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2003, 13, 2935-2948. doi: 10.1142/S021812740300834X

    CrossRef Google Scholar

    [8] C. J. Budd, Non-smooth dynamical systems and the grazing bifurcation, Nonlinear Mathematics and its Applications, Guildford, 1995, Cambridge Univ. Press, Cambridge, 1996, 219-235.

    Google Scholar

    [9] T. Chen, F. Li and P. Yu, Nilpotent center conditions in cubic switching polynomial Lienard systems by higher-order analysis, J. Differ. Equ., 2024, 379, 258-289. doi: 10.1016/j.jde.2023.10.004

    CrossRef Google Scholar

    [10] X. Chen and Z. Du, Limit cycles bifurcate from centers of discontinuous quadratic systems, Comput. Math. Appl., 2010, 59, 3836-3848. doi: 10.1016/j.camwa.2010.04.019

    CrossRef Google Scholar

    [11] X. Chen and W. Zhang, Isochronicity of centers in a switching Bautin system, J. Differ. Equ., 2012, 252, 2877-2899. doi: 10.1016/j.jde.2011.10.013

    CrossRef Google Scholar

    [12] B. Coll, R. Prohens and A. Gasull, The center problem for discontinuous Liénard differential equation, Internat. J. Bifur. Chaos, 1999, 9, 1751-1761. doi: 10.1142/S0218127499001231

    CrossRef Google Scholar

    [13] H. Dankowicz and J. Jerrelind, Control of near-grazing dynamics in impact oscillators, Proc. R. Soc. Lond. Ser. A, 2005, 461, 3365-3380.

    Google Scholar

    [14] H. Dankowicz and A. B. Nordmark, On the origin and bifurcations of stick-slip oscillators, Physica D, 2000, 136, 280-302. doi: 10.1016/S0167-2789(99)00161-X

    CrossRef Google Scholar

    [15] C. X. Du and Y. R. Liu, Isochronicity for a Z2-equivariant cubic system, Nonlinear Dyn., 2017, 87(2), 1235-1252. doi: 10.1007/s11071-016-3112-7

    CrossRef Google Scholar

    [16] A. F. Filippov, Differential Equation with Discontinuous Right-Hand Sides, Kluwer Academic, Netherlands, 1988.

    Google Scholar

    [17] A. Gasull and J. Torregrosa, Center-focus problem for discontinuous planar differential equations, Internat. J. Bifur. Chaos, 2003, 13(7), 1755-1765. doi: 10.1142/S0218127403007618

    CrossRef Google Scholar

    [18] M. Han and W. Zhang, On Hopf bifurcation in non-smooth planar systems, J. Differ. Equ., 2010, 248, 2399-2416. doi: 10.1016/j.jde.2009.10.002

    CrossRef Google Scholar

    [19] D. Hilbert, Mathematical problems, (M. Newton, Transl.). Bull. AM. Math. Soc., 1902, 8, 437-479.

    Google Scholar

    [20] R. A. Ibrahim, Friction-induced vibration, chatter, squeal, andchaos-partⅡ: Dynamics and modeling, Appl. Mech. Rev., 1994, 47(7), 227-253. doi: 10.1115/1.3111080

    CrossRef Google Scholar

    [21] A. Kaplan, N. Friedman, M. Andersen and N. Davidson, Observation of islands of stability in soft wallatom-optics billiards, Phys. Rev. Lett., 2001, 87(27), 27410114.

    Google Scholar

    [22] T. Kinoshita, T. Wenger and D. S. Weiss, A quantum Newtons cradle, Nature, 2006, 440, 900-903. doi: 10.1038/nature04693

    CrossRef Google Scholar

    [23] M. Kunze, Non-Smooth Dynamical Systems, Springer-Verlag, Berlin, 2000.

    Google Scholar

    [24] F. Li, Y. R. Liu, Y. Y. Liu and P. Yu, Complex isochronous centers and linearization transformations for cubic Z2-equivariant planar systems, J. Differ. Equ., 2020, 268, 3819-3847. doi: 10.1016/j.jde.2019.10.011

    CrossRef Google Scholar

    [25] F. Li, Y. R. Liu, Y. Y. Liu and P. Yu, Bi-center problem and bifurcation of limit cycles from nilpotent singular points in Z2-equivariant cubic vector fields, J. Differ. Equ., 2018, 265, 4965-4992. doi: 10.1016/j.jde.2018.06.027

    CrossRef Google Scholar

    [26] F. Li, Y. R Liu, Y. Y. Tian and P. Yu, Integrability and linearizability of cubic Z2 systems with non-resonant singular points, J. Differ. Equ., 2020, 269, 9026-9049. doi: 10.1016/j.jde.2020.06.036

    CrossRef Google Scholar

    [27] F. Li, Y. Y. Liu, P. Yu and J. L. Wang, Complex integrability and linearizability of cubic Z2-equivariant systems with two 1: q resonant singular points, J. Differ. Equ., 2021, 300, 786-813. doi: 10.1016/j.jde.2021.08.015

    CrossRef Google Scholar

    [28] F. Li and P. Yu, A note on the paper center and isochronous center conditions for switching systems associated with elementary singular points, Commun. Nonlinear Sci. Numer. Simulat., 2020, 19, 105405.

    Google Scholar

    [29] T. Liu, F. Li, Y. R. Liu, S. M. Li and J. Wang, Bifurcation of limit cycles and center problem for p:q homogeneous weight systems, Nonl. Anal.: Real World Appl., 2019, 46, 257-273. doi: 10.1016/j.nonrwa.2018.09.018

    CrossRef Google Scholar

    [30] X. Liu and M. Han, Hopf bifurcation for non-smooth Liénard systems, Internat. J. Bifur. Chaos, 2009, 19(7), 2401-2415. doi: 10.1142/S0218127409024177

    CrossRef Google Scholar

    [31] J. Llibre and A. C. Mereu, Limit cycles for discontinuous quadratic differential systems with two zones, J. Math. Anal. Appl., 2014, 413(2), 763-775. doi: 10.1016/j.jmaa.2013.12.031

    CrossRef Google Scholar

    [32] V. A. Lunkevich, The problem of the center for differential equations with discontinuous right sides, Differ. Equ., 1968, 4, 837-844.

    Google Scholar

    [33] H. E. Nusse and J. A. Yorke, Border-collision bifurcations including “period two to period three” for piecewise smooth systems, Physica D, 1992, 57, 39-57. doi: 10.1016/0167-2789(92)90087-4

    CrossRef Google Scholar

    [34] I. I. Pleshkan and K. S. Sibirskii, On the problem of the center of systems with discontinuous right sides, Differ. Equ., 1973, 9, 1396-1402.

    Google Scholar

    [35] V. G. Romanovski, W. Fernandes and R. Oliveira, Bi-center problem for some classes of Z2-equivariant systems, J. Comput. Appl. Math., 2017, 320, 61-75. doi: 10.1016/j.cam.2017.02.003

    CrossRef Google Scholar

    [36] S. Smale, Mathematical problems for the next century, Math. Intell., 1988, 20, 7-15.

    Google Scholar

    [37] Y. Tian and M. Han, Hopf bifurcation for two types of Liénard systems, J. Differ. Equ., 2011, 251(4-5), 834-859. doi: 10.1016/j.jde.2011.05.029

    CrossRef Google Scholar

    [38] Y. Tian and P. Yu, Center conditions in a switching Bautin system, J. Differ. Equ., 2015, 259, 1203-1226. doi: 10.1016/j.jde.2015.02.044

    CrossRef Google Scholar

    [39] Y. Wu and F. Li, Weak centers and local bifurcation of critical periods in a Z2-equivariant vector field of degree 5, Internat. J. Bifur. Chaos, 2023, 33(03), 2350029, 19.

    Google Scholar

    [40] P. Yu and M. Han, Small limit cycles bifurcation from fine focus points in cubic order Z2-equivariant vector fields, Chaos, Solitons and Fractals, 2005, 24, 329-348. doi: 10.1016/S0960-0779(04)00599-5

    CrossRef Google Scholar

    [41] P. Yu, M. Han and Y. Yuan, Analysis on limit cycles of Zq-equivariant polynomial vector fields with degree 3 or 4, J. Math. Anal. Appl., 2006, 322, 51-65. doi: 10.1016/j.jmaa.2005.08.068

    CrossRef Google Scholar

    [42] P. Yu and F. Li, Bifurcation of limit cycles in a cubic-order planar system around a nilpotent critical point, J. Math. Anal. Appl., 2017, 453, 645-667. doi: 10.1016/j.jmaa.2017.04.019

    CrossRef Google Scholar

Article Metrics

Article views(352) PDF downloads(147) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint