Citation: | Ting Wang, Man Xu, Yanyun Li. POSITIVE SOLUTIONS OF DISCRETE BOUNDARY VALUE PROBLEM FOR A SECOND-ORDER NONLINEAR DIFFERENCE EQUATION WITH SINGULAR $\phi $-LAPLACIAN[J]. Journal of Applied Analysis & Computation, 2025, 15(2): 1020-1038. doi: 10.11948/20240245 |
We establish the nonexistence, existence and multiplicity of positive solutions of the following discrete boundary value problem for a second-order nonlinear difference equation with singular $ \phi $-Laplacian
$ \begin{equation*} \begin{cases} \begin{split} &\quad -\nabla(k^{N-1}\phi(\triangle v_k))\ \\&=\lambda Nk^{N-1}\left(\frac{f'(\varphi^{-1}(v_k))}{\sqrt{1-(\triangle v_k)^2}}-f(\varphi^{-1}(v_k))H(\varphi^{-1}(v_k), k)\right), k\in[2, n-1]_{\mathbb{Z}}, \\ &|\triangle v_k|<1, \\ &\triangle v_1=0=v_n, \end{split} \end{cases} \end{equation*} $
where $ \phi(s)=\frac{s}{\sqrt{1-s^2}} $, $ \phi: (-1, 1)\rightarrow \mathbb{R} $ is an increasing homeomorphism with $ \phi(0)=0 $, $ \lambda $ is a positive parameter, $ \triangle $ is the forward difference operator defined by $ \triangle v_k=v_{k+1}-v_k $, $ \nabla $ is the backward difference operator defined by $ \nabla v_k=v_k-v_{k-1} $, $ f\in C^{\infty}(I) $ and $ f>0 $, $ I $ is an open interval in $ \mathbb{R} $, $ \varphi(s)=\int_0^s\frac{dt}{f(t)} $, $ \varphi^{-1} $ is the inverse function of $ \varphi $, $ H:I\times[2, n-1]_{\mathbb{Z}}\rightarrow \mathbb{R} $ is a continuous function, $ [2, n-1]_{\mathbb{Z}}:={2, 3, \ldots, n-1} $, and the integer $ n\geq4 $. By using the method of lower and upper solutions, topological degree theory and Szulkin's critical point theory for convex, lower semicontinous perturbations of $ C^1 $-functionals, we determine the interval of parameter $ \lambda $ in which the above problem has zero, one, two positive solutions according to sublinear at zero.
[1] | C. Bereanu, D. de la Fuente, A. Romero and P. J. Torres, Existence and multiplicity of entire radial spacelike graphs with prescribed mean curvature function in certain Friedmann-Lemaître-Robertson-Walker spacetimes, Commun. Contemp. Math., 2017, 19(2), 1650006. doi: 10.1142/S0219199716500061 |
[2] | C. Bereanu, P. Jebelean and J. Mawhin, Radial solutions for some nonlinear problems involving mean curvature operators in Euclidean and Minkowski spaces, Proc. Amer. Math. Soc., 2009, 137(1), 161–169. |
[3] | C. Bereanu, P. Jebelean and P. J. Torres, Positive radial solutions for Dirichlet problems with mean curvature operators in Minkowski space, J. Funct. Anal., 2013, 264(1), 270–287. doi: 10.1016/j.jfa.2012.10.010 |
[4] | C. Bereanu, P. Jebelean and P. J. Torres, Multiple positive radial solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space, J. Funct. Anal., 2013, 265(4), 644–659. doi: 10.1016/j.jfa.2013.04.006 |
[5] | C. Bereanu and J. Mawhin, Boundary value problems for second-order nonlinear difference equations with discrete ϕ-Laplacian and singular ϕ, J. Difference Equ. Appl., 2008, 14(10–11), 1099–1118. |
[6] | C. Bereanu and H. B. Thompson, Periodic solutions of second order nonlinear difference equations with discrete ϕ-Laplacian, J. Math. Anal. Appl., 2007, 330(2), 1002–1015. doi: 10.1016/j.jmaa.2006.07.104 |
[7] | C. Bereanu and P. J. Torres, A variational approach for the Neumann problem in some FLRW spacetimes, Adv. Nonlinear Stud., 2019, 19(2), 413–423. doi: 10.1515/ans-2018-2030 |
[8] | X. Cao, G. Dai and N. Zhang, Global structure of positive solutions for problem with mean curvature operator on an annular domain, Rocky Mountain J. Math., 2018, 48(6), 1799–1814. |
[9] | T. Chen, R. Ma and Y. Liang, Multiple positive solutions of second-order nonlinear difference equations with discrete singular ϕ-Laplacian, J. Difference Equ. Appl., 2019, 25(1), 38–55. doi: 10.1080/10236198.2018.1554064 |
[10] | I. Coelho, C. Corsato and F. Obersnel, Positive solutions of the Dirichlet problem for the one-dimensional Minkowski-curvature equation, Adv. Nonlinear Stud., 2012, 12(3), 621–638. doi: 10.1515/ans-2012-0310 |
[11] | I. Coelho, C. Corsato and S. Rivetti, Positive radial solutions of the Dirichlet problem for the Minkowski-curvature equation in a ball, Topol. Methods Nonlinear Anal., 2014, 44(1), 23–39. |
[12] | C. Corsato, F. Obersnel and P. Omari, Positive solutions of the Dirichlet problem for the prescribed mean curvature equation in Minkowski space, J. Math. Anal. Appl., 2013, 405(1), 227–239. doi: 10.1016/j.jmaa.2013.04.003 |
[13] | G. Dai, Bifurcation and positive solutions for problem with mean curvature operator in Minkowski space, Calc. Var. Partial Differential Equations, 2016, 55(4), 1–17. |
[14] | G. Dai, Bifurcation and nonnegative solutions for problems with mean curvature operator on general domain, Indiana Univ. Math. J., 2018, 67(6), 2103–2121. doi: 10.1512/iumj.2018.67.7546 |
[15] | G. Dai, A. Romero and P. J. Torres, Global bifurcation of solutions of the mean curvature spacelike equation in certain Friedmann-Lemaître-Robertson-Walker spacetimes, J. Differential Equations, 2018, 264(12), 7242–7269. doi: 10.1016/j.jde.2018.02.014 |
[16] | G. Dai and J. Wang, Nodal solutions to problem with mean curvature operator in Minkowski space, Differential Integral Equations, 2017, 30(5–6), 463–480. |
[17] | D. de la Fuente, A. Romero and P. J. Torres, Radial solutions of the Dirichlet problem for the prescribed mean curvature equation in a Robertson-Walker spacetime, Adv. Nonlinear Stud., 2015, 15(1), 171–181. doi: 10.1515/ans-2015-0109 |
[18] | D. Gurban and P. Jebelean, Positive radial solutions for multiparameter Dirichlet systems with mean curvature operator in Minkowski space and Lane-Emden type nonlinearities, J. Differential Equations, 2019, 266(9), 5377–5396. doi: 10.1016/j.jde.2018.10.030 |
[19] | D. Gurban, P. Jebelean and C. Şerban, Non-potential and non-radial Dirichlet systems with mean curvature operator in Minkowski space, Discrete Contin. Dyn. Syst., 2020, 40(1), 133–151. doi: 10.3934/dcds.2020006 |
[20] | S. Y. Huang, Classification and evolution of bifurcation curves for the one-dimensional Minkowski-curvature problem and its applications, J. Differential Equations, 2018, 264(9), 5977–6011. |
[21] | P. Jebelean and C. Popa, Numerical solutions to singular ϕ-Laplacian with Dirichlet boundary conditions, Numer. Algorithms, 2014, 67(2), 305–318. |
[22] | P. Jebelean, C. Popa and C. Şerban, Numerical extremal solutions for a mixed problem with singular ϕ-Laplacian, NoDEA Nonlinear Differential Equations Appl., 2014, 21(2), 289–304. |
[23] | P. Jebelean and C. Şerban, Fisher-Kolmogorov type perturbations of the mean curvature operator in Minkowski space, Electron. J. Qual. Theory Differ. Equ., 2020, 2020(81), 1–12. |
[24] | Z. Li and Y. Lu, Positive solutions for semipositive nonlinear Dirichlet problem with one-dimensional Minkowski mean curvature operator, J. Jilin Univ. Sci., 2023, 61(4), 785–795. |
[25] | R. Ma and Y. Lu, Multiplicity of positive solutions for second order nonlinear Dirichlet problem with one-dimension Minkowski-curvature operator, Adv. Nonlinear Stud., 2015, 15(4), 789–803. |
[26] | R. Ma and M. Xu, Positive rotationally symmetric solutions for a Dirichlet problem involving the higher mean curvature operator in Minkowski space, J. Math. Anal. Appl., 2018, 460(1), 33–46. |
[27] | R. Ma and M. Xu, Connected components of positive solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space, Discrete Contin. Dyn. Syst. Ser. B, 2019, 24(6), 2701–2718. |
[28] | J. Mawhin and P. J. Torres, Prescribed mean curvature graphs with Neumann boundary conditions in some FLRW spacetimes, J. Differential Equations, 2016, 261(12), 7145–7156. |
[29] | A. Szulkin, Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1986, 3(2), 77–109. |
[30] | P. J. Torres, The prescribed mean curvature problem with Neumann boundary conditions in FLRW spacetimes, Rend. Istit. Mat. Univ. Trieste, 2017, 49, 19–25. |
[31] | M. Xu and R. Ma, Discrete Neumann boundary value problem for a nonlinear equation with singular ϕ-Laplacian, Adv. Difference Equ., 2018, 2018(1), 1–12. |
[32] | M. Xu and R. Ma, Nonspurious solutions of the Dirichlet problem for the prescribed mean curvature spacelike equation in a Friedmann-Lemaître-Robertson-Walker spacetime, Rocky Mountain J. Math., 2023, 53(4), 1291–1311. |