2025 Volume 15 Issue 6
Article Contents

Ziqiang Wang, Xiao Wang, Junying Cao. HIGH-ORDER NUMERICAL SCHEME AND THEORETICAL ANALYSIS FOR NONLINEAR TWO-DIMENSIONAL FRACTIONAL VOLTERRA INTEGRAL EQUATIONS WITH INITIAL VALUE SINGULARITY[J]. Journal of Applied Analysis & Computation, 2025, 15(6): 3369-3402. doi: 10.11948/20240345
Citation: Ziqiang Wang, Xiao Wang, Junying Cao. HIGH-ORDER NUMERICAL SCHEME AND THEORETICAL ANALYSIS FOR NONLINEAR TWO-DIMENSIONAL FRACTIONAL VOLTERRA INTEGRAL EQUATIONS WITH INITIAL VALUE SINGULARITY[J]. Journal of Applied Analysis & Computation, 2025, 15(6): 3369-3402. doi: 10.11948/20240345

HIGH-ORDER NUMERICAL SCHEME AND THEORETICAL ANALYSIS FOR NONLINEAR TWO-DIMENSIONAL FRACTIONAL VOLTERRA INTEGRAL EQUATIONS WITH INITIAL VALUE SINGULARITY

  • Author Bio: Email: wangzq@lsec.cc.ac.cn(Z. Wang); Email: wangxiaomath@126.com (X. Wang)
  • Corresponding author: Email: caojunying@gzmu.edu.cn(J. Cao)
  • Fund Project: Z. Q. Wang was supported by National Natural Science Foundation of China (Grant Nos. 12461077, 11961009), Foundation of Guizhou Science and Technology Department (Grant No. QHKJC-ZK[2024]YB497), Department of Education of Guizhou Province (Grant No. QJJ2023012), High-Level Innovative Talent Project of Guizhou Province (Grant No. QKHPTRC-GCC2023027), and the Science and Technology Innovation Talent Team Project of Data Science and Computing Intelligence of Guizhou Province (Grant no. QKHRCCXTD2025038). J. Y. Cao was supported by National Natural Science Foundation of China (Grant No. 12361083), Science research fund support project of the Guizhou Minzu University (Grant No. GZMUZK[2023]CXTD05) and Young Teacher Foundation of Henan Province (No. 2021GGJS080)
  • Various numerical methods have been proposed for solving one-dimensional weakly singular Volterra integral equations (VIEs) with smooth solutions. The main purpose of this paper is to propose and analyze a numerical method for the solution of two-dimensional nonlinear weakly singular VIEs with non-smooth solutions by involving the transformation of variables and modified Block-by-Block method. We rigorously prove that the new scheme can achieve an order of $ O(\tau_s^{3+\alpha}+\lambda_t^{3+\beta}) $ for non-smooth solutions with step size $ \tau_s,\lambda_t $ for $ 0<\alpha,\beta<1 $. Some numerical examples are conducted to support the theoretical results and demonstrate the effectiveness of the proposed method.

    MSC: 65R20, 65D30
  • 加载中
  • [1] H. Beyrami, T. Lotfi and K. Mahdiani, Stability and error analysis of the reproducing kernel Hilbert space method for the solution of weakly singular Volterra integral equation on graded mesh, Appl. Numer. Math., 2017, 120, 197–214. doi: 10.1016/j.apnum.2017.05.010

    CrossRef Google Scholar

    [2] J. Cao and C. Xu, A high order schema for the numerical solution of the fractional ordinary differential equations, J. Comput. Phys., 2013, 238, 154–168. doi: 10.1016/j.jcp.2012.12.013

    CrossRef Google Scholar

    [3] W. Cao, F. Zeng, Z. Zhang and G. E. Karniadakis, Implicit-explicit difference schemes for nonlinear fractional differential equations with nonsmooth solutions, SIAM J. Sci. Comput., 2016, 38, A3070–A3093. doi: 10.1137/16M1070323

    CrossRef Google Scholar

    [4] Y. Cao, T. Herdman and Y. Xu, A hybrid collocation method for Volterra integral equations with weakly singular kernels, SIAM J. Numer. Anal., 2003, 41, 364–381. doi: 10.1137/S0036142901385593

    CrossRef Google Scholar

    [5] Y. Chakir and H. Safouhi, Numerical solution of two-dimensional weakly singular Volterra integral equations of the first kind via bivariate rational approximants, J. Comput. Appl. Math., 2024, 436, 115378. DOI: 10.1016/j.cam.2023.115378.

    CrossRef Google Scholar

    [6] Y. Chakir and H. Safouhi, On solving 2D weakly singular Volterra integral equations of the second kind, Numer. Algorithms, 2024. DOI: 10.1007/s11075-024-01854-4.

    CrossRef Google Scholar

    [7] K. Diethelm, N. J. Ford and A. D. Freed, Detailed error analysis for a fractional Adams method, Numer. Algorithms, 2004, 36, 31–52. doi: 10.1023/B:NUMA.0000027736.85078.be

    CrossRef Google Scholar

    [8] T. Diogo, P. Limam, A. Pedas and G. Vainikko, Smoothing transformation and spline collocation for weakly singular Volterra integro-differential equations, Appl. Numer. Math., 2017, 114, 63–76. doi: 10.1016/j.apnum.2016.08.009

    CrossRef Google Scholar

    [9] J. Dixon and S. McKee, Weakly singular discrete Gronwall inequalities, Z. Angew. Math. Mech., 1986, 66, 535–544. doi: 10.1002/zamm.19860661107

    CrossRef Google Scholar

    [10] C. Huang and M. Stynes, Spectral Galerkin methods for a weakly singular Volterra integral equation of the second kind, IMA J. Numer. Anal., 2017, 37, 1411–1436.

    Google Scholar

    [11] R. Katani and S. McKee, Numerical solution of two-dimensional weakly singular Volterra integral equations with non-smooth solutions, J. Comput. Appl. Math., 2022, 402, 113779. DOI: 10.1016/j.cam.2021.113779.

    CrossRef Google Scholar

    [12] L. Li, D. Zhao, M. She and X. Chen, On high order numerical schemes for fractional differential equations by block-by-block approach, Appl. Math. Comput., 2022, 425, 127098. DOI: 10.1016/j.amc.2022.127098.

    CrossRef Google Scholar

    [13] X. Li, T. Tang and C. Xu, Numerical solutions for weakly singular Volterra integral equations using Chebyshev and Legendre pseudo-spectral Galerkin methods, J. Sci. Comput., 2016, 67, 43–64. doi: 10.1007/s10915-015-0069-5

    CrossRef Google Scholar

    [14] X. Ma and C. Huang, Recovery of high order accuracy in spectral collocation method for linear Volterra integral equations of the third-kind with non-smooth solutions, J. Comput. Appl. Math., 2021, 392, 113458. DOI: 10.1016/j.cam.2021.113458.

    CrossRef Google Scholar

    [15] Z. Ma, M. Stynes and C. Huang, Convergence and superconvergence of a fractional collocation method for weakly singular Volterra integro-differential equations, BIT, 2024, 64, 9. DOI: 10.1007/s10543-024-01011-2.

    CrossRef Google Scholar

    [16] S. McKee, T. Tang and T. Diogo, An Euler-type method for two-dimensional Volterra integral equations of the first kind, IMA J. Numer. Anal., 2020, 20, 423–440.

    Google Scholar

    [17] M. Mostafazadeh and S. Shahmorad, Convergence analysis of Jacobi spectral tau-collocation method in solving a system of weakly singular Volterra integral equations, Math. Comput. Simulation, 2024, 223, 322–337. doi: 10.1016/j.matcom.2024.04.023

    CrossRef Google Scholar

    [18] M. Rasty and M. Hadizadeh, A product integration approach based on new orthogonal polynomials for nonlinear weakly singular integral equations, Acta Appl. Math., 2010, 109, 861–873. doi: 10.1007/s10440-008-9351-y

    CrossRef Google Scholar

    [19] S. Arsalan Sajjadi, H. Saberi Najafi and H. Aminikhah, A numerical study on the non-smooth solutions of the nonlinear weakly singular fractional Volterra integro-differential equations, Math. Methods Appl. Sci., 2023, 46, 4070–4084. doi: 10.1002/mma.8741

    CrossRef Google Scholar

    [20] Y. Talaei, M. A. Zaky and A. S. Hendy, An easy-to-implement recursive fractional spectral-Galerkin method for multi-term weakly singular Volterra integral equations with non-smooth solutions, Numer. Algorithms, 2024. DOI: 10.1007/s11075-023-01742-3.

    CrossRef Google Scholar

    [21] T. Wang, H. Lian and L. Ji, Singularity separation Chebyshev collocation method for weakly singular Volterra integral equations of the second kind, Numer. Algorithms, 2024, 95, 1829–1854. doi: 10.1007/s11075-023-01629-3

    CrossRef Google Scholar

    [22] Z. Wang, Q. Liu and J. Cao, A higher-order numerical scheme for two-dimensional nonlinear fractional Volterra integral equations with uniform accuracy, Fractal Fract., 2022, 6, 314. DOI: 10.3390/fractalfract6060314.

    CrossRef Google Scholar

    [23] Z. Wang, Q. Tan, Z. Wang and J. Cao, Multiquadric quasi-interpolation method for fractional integral-differential equations, J. Appl. Anal. Comput., 2024, 14, 2534–2557.

    Google Scholar

    [24] G. Yao, Z. Wang and C. Zhang, A multi-domain hybrid spectral collocation method for nonlinear Volterra integral equations with weakly singular kernel, J. Comput. Appl. Math., 2024, 444, 115785. DOI: 10.1016/j.cam.2024.115785.

    CrossRef Google Scholar

    [25] G. Zakeri and M. Navab, Sinc collocation approximation of non-smooth solution of a nonlinear weakly singular Volterra integral equation, J. Comput. Phys., 2010, 229, 6548–6557. doi: 10.1016/j.jcp.2010.05.010

    CrossRef Google Scholar

    [26] M. A. Zaky, Recovery of high order accuracy in Jacobi spectral collocation methods for fractional terminal value problems with non-smooth solutions, J. Comput. Appl. Math., 2019, 357, 103–122. doi: 10.1016/j.cam.2019.01.046

    CrossRef Google Scholar

    [27] M. A. Zaky, An accurate spectral collocation method for nonlinear systems of fractional differential equations and related integral equations with nonsmooth solutions, Appl. Numer. Math., 2020, 154, 205–222. doi: 10.1016/j.apnum.2020.04.002

    CrossRef Google Scholar

Figures(3)  /  Tables(3)

Article Metrics

Article views(14) PDF downloads(5) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint