2025 Volume 15 Issue 6
Article Contents

Ningning Zhu, Fanwei Meng. NONEXISTENCE OF COEXISTING STEADY-STATE SOLUTIONS FOR A REACTION-DIFFUSION COMPETING SYSTEM WITH FRACTIONAL TYPE CROSS-DIFFUSION[J]. Journal of Applied Analysis & Computation, 2025, 15(6): 3403-3413. doi: 10.11948/20250005
Citation: Ningning Zhu, Fanwei Meng. NONEXISTENCE OF COEXISTING STEADY-STATE SOLUTIONS FOR A REACTION-DIFFUSION COMPETING SYSTEM WITH FRACTIONAL TYPE CROSS-DIFFUSION[J]. Journal of Applied Analysis & Computation, 2025, 15(6): 3403-3413. doi: 10.11948/20250005

NONEXISTENCE OF COEXISTING STEADY-STATE SOLUTIONS FOR A REACTION-DIFFUSION COMPETING SYSTEM WITH FRACTIONAL TYPE CROSS-DIFFUSION

  • Author Bio: Email: znn199192@163.com(N. Zhu)
  • Corresponding author: Email: fwmeng@qfnu.edu.cn(F. Meng)
  • Fund Project: The authors were supported by Natural Science Foundation of Shandong Province (No. ZR2021QA103)
  • We discuss a system of two competing species with fractional type cross-diffusion. The basic idea is to make a link among the extreme values of steady-state solutions according to the maximum principle. Then by introducing a proper discriminant function, which is monotonically decreasing, we establish sufficient conditions such that the system has no coexisting steady-state solutions.

    MSC: 35J60, 35A01
  • 加载中
  • [1] H. Amann, Dynamic theory of quasilinear parabolic systems, Ⅲ: Global existence, Math Z., 1989, 202(2), 219–250. doi: 10.1007/BF01215256

    CrossRef Google Scholar

    [2] L. Desvillettes, About the triangular Shigesada-Kawasaki-Teramoto reaction cross diffusion system, Ric. Mat., 2024, 73(1), S105–S114.

    Google Scholar

    [3] J. Guerand, A. Menegaki and A. Trescases, Global smooth solutions for triangular reaction-cross diffusion systems, Bull. Sci. Math., 2023, 189, Paper No. 103342, 27 pp.

    Google Scholar

    [4] L. T. Hoang, T. V. Nguyen and T. V. Phan, Gradient estimates and global existence of smooth solutions for a system of cross-diffusion equations, SIAM J. Math. Anal., 2015, 47(3), 2122–2177. doi: 10.1137/140981447

    CrossRef Google Scholar

    [5] Y. Jia, J. Wu and H. Xu, Positive solutions of a Lotka-Volterra competition model with cross-diffusion, Comput. Math. Appl., 2014, 68(10), 1220–1228. doi: 10.1016/j.camwa.2014.08.016

    CrossRef Google Scholar

    [6] T. Kadota and K. Kuto, Positive steady states for a prey-predator model with some nonlinear diffusion terms, J. Math. Anal. Appl., 2006, 323(2), 1387–1401. doi: 10.1016/j.jmaa.2005.11.065

    CrossRef Google Scholar

    [7] J. Kang, Uniqueness of steady state positive solutions to a general elliptic system with Dirichlet boundary conditions, J. Appl. Anal. Comput., 2022, 12(6), 2370–2385.

    Google Scholar

    [8] K. Kuto and H. Sato, Morse Index of steady-states to the SKT model with Dirichlet boundary conditions, SIAM J. Math. Anal., 2024, 56(4), 5386–5408. doi: 10.1137/23M1627705

    CrossRef Google Scholar

    [9] K. Kuto and Y. Yamada, Multiple coexistence states for a prey-predator system with cross-diffusion, J. Differential Equations, 2004, 197(2), 315–348. doi: 10.1016/j.jde.2003.08.003

    CrossRef Google Scholar

    [10] K. Kuto and Y. Yamada, Positive solutions for Lotka-Volterra competition systems with large cross-diffusion, Appl. Anal., 2010, 89(7), 1037–1066. doi: 10.1080/00036811003627534

    CrossRef Google Scholar

    [11] D. Le, Global existence for a class of strongly coupled parabolic systems, Ann. Mat. Pura Appl., 2006, 185(1), 133–154. doi: 10.1007/s10231-004-0131-7

    CrossRef Google Scholar

    [12] Y. Lou and W. -M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 1996, 131(1), 79–131. doi: 10.1006/jdeq.1996.0157

    CrossRef Google Scholar

    [13] Y. Lou and W. -M. Ni, Diffusion vs cross-Diffusion: An elliptic approach, J. Differential Equations, 1999, 154(1), 157–190. doi: 10.1006/jdeq.1998.3559

    CrossRef Google Scholar

    [14] Y. Lou, Y. Tao and M. Winkler, Nonexistence of nonconstant steady-state solutions in a triangular cross-diffusion model, J. Differential Equations, 2017, 262(10), 5160–5178. doi: 10.1016/j.jde.2017.01.017

    CrossRef Google Scholar

    [15] W. Ruan, Positive steady-state solutions of a competing reaction-diffusion system with large cross-diffusion coefficients, J. Math. Anal. Appl., 1996, 197(2), 558–578. doi: 10.1006/jmaa.1996.0039

    CrossRef Google Scholar

    [16] N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species, J. Theoret. Biol., 1979, 79(1), 83–99. doi: 10.1016/0022-5193(79)90258-3

    CrossRef Google Scholar

    [17] P. V. Tuoc, Global existence of solutions to Shigesada-Kawasaki-Keramoto cross-diffusion systems on domains of arbitrary dimensions, Proc. Amer. Math. Soc., 2007, 135(12), 3933–3941. doi: 10.1090/S0002-9939-07-08978-2

    CrossRef Google Scholar

    [18] Y. Wu, Existence of stationary solutions with transition layers for a class of cross-diffusion systems, P. Roy. Soc. Edinb. A, 2002, 132(6), 1493–1511. doi: 10.1017/S0308210500002225

    CrossRef Google Scholar

    [19] S. Zhang, Z. Yu and Y. Meng, Stability of traveling wave fronts for nonlocal diffusive systems, J. Appl. Anal. Comput, 2024, 14(4), 2063–2081.

    Google Scholar

    [20] N. Zhu, Existence of steady-state solutions for a class of competing systems with cross-diffusion and self-diffusion, Electron. J. Qual. Theory Differ. Equ., 2021, 2, 1–10.

    Google Scholar

    [21] N. Zhu and D. Tang, Nonexistence of coexisting steady-state solutions of Dirichlet problem for a cross-diffusion model, Math. Method. Appl. Sci., 2019, 42(1), 346–353. doi: 10.1002/mma.5350

    CrossRef Google Scholar

Article Metrics

Article views(2) PDF downloads(0) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint