2025 Volume 15 Issue 6
Article Contents

Asma Rashid Butt, Zainab Rana, Dumitru Baleanu, Mustafa Bayram. EXPLORATION OF FRACTIONAL EFFECTS AND MULTI-STABILITY IN THE NONLINEAR (2+1)-DIMENSIONAL DAVEY-STEWARTSON FOKAS SYSTEM[J]. Journal of Applied Analysis & Computation, 2025, 15(6): 3345-3368. doi: 10.11948/20240518
Citation: Asma Rashid Butt, Zainab Rana, Dumitru Baleanu, Mustafa Bayram. EXPLORATION OF FRACTIONAL EFFECTS AND MULTI-STABILITY IN THE NONLINEAR (2+1)-DIMENSIONAL DAVEY-STEWARTSON FOKAS SYSTEM[J]. Journal of Applied Analysis & Computation, 2025, 15(6): 3345-3368. doi: 10.11948/20240518

EXPLORATION OF FRACTIONAL EFFECTS AND MULTI-STABILITY IN THE NONLINEAR (2+1)-DIMENSIONAL DAVEY-STEWARTSON FOKAS SYSTEM

  • This work delves into a profound analysis of the fractional Davey-Stewartson Fokas system, which has applications in analyzing two-dimensional wave packets on water surfaces and modeling pulse propagation in optical fibers. An in-depth comparative study is conducted on the local M and the fractional beta derivatives to elucidate their effects on the system's solutions and to investigate the role of fractional parameters in shaping the system's behavior. Two approaches, the $ G'/(bG'+G+a) $ expansion and the Sardar sub-equation approaches, are employed to generate new solitary wave solutions that appear in the form of lump, periodic, singular, bright, and their combo solitons. The solutions are produced under constraint conditions and illustrated using 3D, density, and 2D plots by selecting appropriate values of parameters. Moreover, chaotic phenomena are analyzed through the observation of multi-stability by setting the parameters and varying initial conditions. The extracted solutions validate the effectiveness of the proposed methodologies in deriving exact solutions in nonlinear contexts.

    MSC: 35C08, 37K40
  • 加载中
  • [1] W. Albalawi, N. Raza, S. Arshed, M. Farman, K. S. Nisar and A. H. Abdel-Aty, Chaotic behavior and construction of a variety of wave structures related to a new form of generalized q-Deformed sinh-Gordon model using couple of integration norms, AIMS Mathematics, 2024, 9(4), 9536–9555. doi: 10.3934/math.2024466

    CrossRef Google Scholar

    [2] K. K. Ali, A. M. Wazwaz and M. S. Osman, Optical soliton solutions to the generalized nonautonomous nonlinear Schrödinger equations in optical fibers via the sine-Gordon expansion method, Optik, 2020, 208, 164132. doi: 10.1016/j.ijleo.2019.164132

    CrossRef Google Scholar

    [3] A. H. Arnous, A. R. Seadawy, R. T. Alqahtani and A. Biswas, Optical solitons with complex Ginzburg–Landau equation by modified simple equation method, Optik, 2017, 144, 475–480. doi: 10.1016/j.ijleo.2017.07.013

    CrossRef Google Scholar

    [4] D. Bahns, N. Pinamonti and K. Rejzner, Equilibrium states for the massive Sine-Gordon theory in the Lorentzian signature, Journal of Mathematical Analysis and Applications, 2023, 526(2), 127249. doi: 10.1016/j.jmaa.2023.127249

    CrossRef Google Scholar

    [5] H. M. Baskonus, New acoustic wave behaviors to the Davey–Stewartson equation with power-law nonlinearity arising in fluid dynamics, Nonlinear Dynamics, 2016, 86, 177–183. doi: 10.1007/s11071-016-2880-4

    CrossRef Google Scholar

    [6] A. R. Butt, N. Raza, M. Inc and R. T. Alqahtani, Complexitons, Bilinear forms and Bilinear Bäcklund transformation of a (2+1)-dimensional Boiti–Leon–Manna–Pempinelli model describing incompressible fluid, Chaos, Solitons and Fractals, 2023, 168, 113201. doi: 10.1016/j.chaos.2023.113201

    CrossRef Google Scholar

    [7] M. S. Ghayad, N. M. Badra, H. M. Ahmed and W. B. Rabie, Derivation of optical solitons and other solutions for nonlinear Schrödinger equation using modified extended direct algebraic method, Alexandria Engineering Journal, 2023, 64, 801–811. doi: 10.1016/j.aej.2022.10.054

    CrossRef Google Scholar

    [8] M. M. Hassan, Exact solitary wave solutions for a generalized KdV–Burgers equation, Chaos, Solitons and Fractals, 2004, 19(5), 1201–1206. doi: 10.1016/S0960-0779(03)00309-6

    CrossRef Google Scholar

    [9] B. Hong, Assorted exact explicit solutions for the generalized Atangana's fractional BBM–Burgers equation with the dissipative term, Frontiers in Physics, 2022, 10, 1071200. doi: 10.3389/fphy.2022.1071200

    CrossRef Google Scholar

    [10] A. J. M. Jawad, M. D. Petković and A. Biswas, Modified simple equation method for nonlinear evolution equations, Applied Mathematics and Computation, 2010, 217(2), 869–877. doi: 10.1016/j.amc.2010.06.030

    CrossRef Google Scholar

    [11] B. Kemaloğlu, G. Yel and H. Bulut, An application of the rational sine–Gordon method to the Hirota equation, Optical and Quantum Electronics, 2023, 55(7), 658. doi: 10.1007/s11082-023-04930-6

    CrossRef Google Scholar

    [12] S. Kumar, W. X. Ma, S. K. Dhiman and A. Chauhan, Lie group analysis with the optimal system, generalized invariant solutions, and an enormous variety of different wave profiles for the higher-dimensional modified dispersive water wave system of equations, The European Physical Journal Plus, 2023, 138(5), 434. doi: 10.1140/epjp/s13360-023-04053-7

    CrossRef Google Scholar

    [13] R. J. Kuo, M. R. Setiawan and T. P. Nguyen, Sequential clustering and classification using deep learning technique and multi-objective sine-cosine algorithm, Computers and Industrial Engineering, 2022, 173, 108695. doi: 10.1016/j.cie.2022.108695

    CrossRef Google Scholar

    [14] J. Lai, S. Mao, J. Qiu, H. Fan, Q. Zhang, Z. Hu and J. Chen, Investigation progresses and applications of fractional derivative model in geotechnical engineering, Mathematical Problems in Engineering, no. 1, 2016, 9183296.

    Google Scholar

    [15] L. F. Mollenauer and J. P. Gordon, Solitons in Optical Fibers: Fundamentals and Applications, Elsevier, 2006.

    Google Scholar

    [16] S. Momani and Z. Odibat, Analytical approach to linear fractional partial differential equations arising in fluid mechanics, Physics Letters A, 2006, 355(4–5), 271–279.

    Google Scholar

    [17] M. A. Murad, M. Iqbal, A. H. Arnous, A. Biswas, Y. Yildirim and A. S. Alshomrani, Optical dromions with fractional temporal evolution by enhanced modified tanh expansion approach, Journal of Optics, 2024, 1–10.

    Google Scholar

    [18] M. N. Rafiq, A. Majeed, S. W. Yao, M. Kamran, M. H. Rafiq and M. Inc, Analytical solutions of nonlinear time fractional evaluation equations via unified method with different derivatives and their comparison, Results in Physics, 2021, 26, 104357. doi: 10.1016/j.rinp.2021.104357

    CrossRef Google Scholar

    [19] R. U. Rahman, A. F. Al-Maaitah, M. Qousini, E. A. Az-Zobi, S. M. Eldin and M. Abuzar, New soliton solutions and modulation instability analysis of fractional Huxley equation, Results in Physics, 2023, 44, 106163. doi: 10.1016/j.rinp.2022.106163

    CrossRef Google Scholar

    [20] R. U. Rahman, M. M. Qousini, A. Alshehri, S. M. Eldin, K. El-Rashidy and M. S. Osman, Evaluation of the performance of fractional evolution equations based on fractional operators and sensitivity assessment, Results in Physics, 2023, 49, 106537. doi: 10.1016/j.rinp.2023.106537

    CrossRef Google Scholar

    [21] N. Raza, S. S. Kazmi and G. A. Basendwah, Dynamical analysis of solitonic, quasi-periodic, bifurcation and chaotic patterns of Landau–Ginzburg–Higgs model, Journal of Applied Analysis and Computation, 2024, 14(1), 197–213. doi: 10.11948/20230137

    CrossRef Google Scholar

    [22] N. Raza, M. H. Rafiq, M. Kaplan, S. Kumar and Y. M. Chu, The unified method for abundant soliton solutions of local time fractional nonlinear evolution equations, Results in Physics, 2021, 22, 103979.

    Google Scholar

    [23] H. Rezazadeh, S. M. Mirhosseini-Alizamini, A. Neirameh, A. Souleymanou, A. Korkmaz and A. Bekir, Fractional Sine–Gordon equation approach to the coupled higgs system defined in time-fractional form, Iranian Journal of Science and Technology, Transactions A: Science, 2019, 43, 2965–2973.

    Google Scholar

    [24] T. A. Sulaiman, A. Yusuf and A. Atangana, New lump, lump-kink, breather waves and other interaction solutions to the (3+1)-dimensional soliton equation, Communications in Theoretical Physics, 2020, 72(8), 085004.

    Google Scholar

    [25] K. L. Wang, New mathematical approaches to nonlinear coupled Davey– Stewartson Fokas system arising in optical fibers, Mathematical Methods in the Applied Sciences, 2024, (47), 12668–12683.

    Google Scholar

    [26] A. Yusuf, T. A. Sulaiman, M. Inc and M. Bayram, Breather wave, lump-periodic solutions and some other interaction phenomena to the Caudrey–Dodd–Gibbon equation, The European Physical Journal Plus, 2020, 135(7), 1–8.

    Google Scholar

Figures(16)

Article Metrics

Article views(14) PDF downloads(6) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint