2025 Volume 15 Issue 6
Article Contents

Xue Yang, Jieyu Liu, Jing Zhang. A NEKHOROSHEV TYPE THEOREM FOR THE FRACTIONAL NONLINEAR SCHRÖDINGER EQUATION[J]. Journal of Applied Analysis & Computation, 2025, 15(6): 3317-3344. doi: 10.11948/20240555
Citation: Xue Yang, Jieyu Liu, Jing Zhang. A NEKHOROSHEV TYPE THEOREM FOR THE FRACTIONAL NONLINEAR SCHRÖDINGER EQUATION[J]. Journal of Applied Analysis & Computation, 2025, 15(6): 3317-3344. doi: 10.11948/20240555

A NEKHOROSHEV TYPE THEOREM FOR THE FRACTIONAL NONLINEAR SCHRÖDINGER EQUATION

  • Author Bio: Email: yangxue03170204@163.com(X. Yang); Email: jzhang@math.ecnu.edu.cn(J. Zhang)
  • Corresponding author: Email: 52215500034@stu.ecnu.edu.cn(J. Liu) 
  • Fund Project: Funding was provided by National Natural Science Foundation of China (Grant No. 11871023 and No. 12171315). This paper is supported in part by Science and Technology Commission of Shanghai Municipality (No. 22DZ2229014)
  • We prove a Nekhoroshev type theorem for the fractional nonlinear Schrödinger equation under Dirichlet boundary conditions. More precisely, our findings show that the solutions with $ \varepsilon $-small initial data in the Gevrey space remain in their small magnitude over time intervals of order $ \varepsilon^{-\lvert \ln\varepsilon\rvert^{\gamma}} $ with $ 0 <\gamma<1/10 $. The result can be proved by using Birkhoff normal form method and the so-called tame property of the nonlinearity in Gevrey space.

    MSC: 37J40, 37K55, 35B35, 35Q35
  • 加载中
  • [1] D. Bambusi and B. Grébert, Birkhoff normal form for partial differential equations with tame modulus, Duke Math. J., 2006, 135(3), 507–567.

    Google Scholar

    [2] D. Bambusi, B. Grébert, A. Maspero and D. Robert, Growth of Sobolev norms for abstract linear Schrödinger equations, J. Eur. Math. Soc. (JEMS), 2021, 23(2), 557–583.

    Google Scholar

    [3] D. Bambusi, B. Langella and R. Montalto, Growth of Sobolev norms for unbounded perturbations of the Schrödinger equation on flat tori, J. Differential Equations, 2022, 318, 344–358. doi: 10.1016/j.jde.2022.02.024

    CrossRef Google Scholar

    [4] D. Bambusi and Y. Sire, Almost global existence for a fractional Schrödinger equation on spheres and tori, Dyn. Partial Differ. Equ., 2013, 10(2), 171–176. doi: 10.4310/DPDE.2013.v10.n2.a3

    CrossRef Google Scholar

    [5] S. Barbieri, J. P. Marco and J. E. Massetti, Analytic smoothing and Nekhoroshev estimates for Hölder steep Hamiltonians, Comm. Math. Phys., 2022, 396(1), 349–381. doi: 10.1007/s00220-022-04464-0

    CrossRef Google Scholar

    [6] G. Benettin, J. Fröhlich and A. Giorgilli, A Nekhoroshev-type theorem for Hamiltonian systems with infinitely many degrees of freedom, Comm. Math. Phys., 1988, 119(1), 95–108. doi: 10.1007/BF01218262

    CrossRef Google Scholar

    [7] J. Bernier, E. Faou and B. Grébert, Rational normal forms and stability of small solutions to nonlinear Schrödinger equations, Ann. PDE, 2020, 6(2), Paper No. 14, 65.

    Google Scholar

    [8] J. Bernier and B. Grébert, Long time dynamics for generalized Korteweg-de Vries and Benjamin-Ono equations, Arch. Ration. Mech. Anal., 2021, 241(3), 1139–1241. doi: 10.1007/s00205-021-01666-z

    CrossRef Google Scholar

    [9] M. Berti, R. Feola and L. Franzoi, Quadratic life span of periodic gravity-capillary water waves, Water Waves, 2021, 3(1), 85–115. doi: 10.1007/s42286-020-00036-8

    CrossRef Google Scholar

    [10] M. Berti, R. Feola and F. Pusateri, Birkhoff normal form for gravity water waves, Water Waves, 2021, 3(1), 117–126. doi: 10.1007/s42286-020-00024-y

    CrossRef Google Scholar

    [11] L. Biasco, J. E. Massetti and M. Procesi, An abstract Birkhoff normal form theorem and exponential type stability of the 1d NLS, Comm. Math. Phys., 2020, 375(3), 2089–2153. doi: 10.1007/s00220-019-03618-x

    CrossRef Google Scholar

    [12] J. Bourgain, Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equations, Geom. Funct. Anal., 1996, 6(2), 201–230. doi: 10.1007/BF02247885

    CrossRef Google Scholar

    [13] J. Bourgain, On diffusion in high-dimensional Hamiltonian systems and PDE, J. Anal. Math., 2000, 80, 1–35. doi: 10.1007/BF02791532

    CrossRef Google Scholar

    [14] Q. Chen, H. Cong, L. Meng and X. Wu, Long time stability result for 1-dimensional nonlinear Schrödinger equation, J. Differential Equations, 2022, 315, 90–121. doi: 10.1016/j.jde.2022.01.032

    CrossRef Google Scholar

    [15] J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation, Invent. Math., 2010, 181(1), 39–113. doi: 10.1007/s00222-010-0242-2

    CrossRef Google Scholar

    [16] H. Cong, S. Li and X. Wu, Long time stability result for $d$-dimensional nonlinear Schrödinger equation, J. Differential Equations, 2024, 394, 174–208. doi: 10.1016/j.jde.2024.02.048

    CrossRef Google Scholar

    [17] H. Cong, C. Liu and P. Wang, A Nekhoroshev type theorem for the nonlinear wave equation, J. Differential Equations, 2020, 269(4), 3853–3889. doi: 10.1016/j.jde.2020.03.015

    CrossRef Google Scholar

    [18] J. M. Delort, Long-time Sobolev stability for small solutions of quasi-linear Klein-Gordon equations on the circle, Trans. Amer. Math. Soc., 2009, 361(8), 4299–4365. doi: 10.1090/S0002-9947-09-04747-3

    CrossRef Google Scholar

    [19] J. M. Delort, Quasi-linear perturbations of Hamiltonian Klein-Gordon equations on spheres, Mem. Amer. Math. Soc., 2015, 234(1103), vi+80.

    Google Scholar

    [20] J. M. Delort and J. Szeftel, Long-time existence for small data nonlinear Klein-Gordon equations on tori and spheres, Int. Math. Res. Not., 2004, 37, 1897–1966.

    Google Scholar

    [21] J. M. Delort and J. Szeftel, Long-time existence for semi-linear Klein-Gordon equations with small Cauchy data on Zoll manifolds, Amer. J. Math., 2006, 128(5), 187–1218.

    Google Scholar

    [22] J. L. A. Dubbeldam, Z. Tomovski and T. Sandev, Space-time fractional Schrödinger equation with composite time fractional derivative, Fract. Calc. Appl. Anal., 2015, 18(5), 1179–1200. doi: 10.1515/fca-2015-0068

    CrossRef Google Scholar

    [23] E. Faou and B. Grébert, A Nekhoroshev-type theorem for the nonlinear Schrödinger equation on the torus, Anal. PDE, 2013, 6(6), 1243–1262. doi: 10.2140/apde.2013.6.1243

    CrossRef Google Scholar

    [24] P. Felmer, A. Quaas and J. Tan, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 2012, 142(6), 1237–1262. doi: 10.1017/S0308210511000746

    CrossRef Google Scholar

    [25] F. Giuliani, Transfers of energy through fast diffusion channels in some resonant PDEs on the circle, Discrete Contin. Dyn. Syst., 2021, 41(11), 5057–5085. doi: 10.3934/dcds.2021068

    CrossRef Google Scholar

    [26] M. Guardia, Z. Hani, E. Haus, A. Maspero and M. Procesi, Strong nonlinear instability and growth of Sobolev norms near quasiperiodic finite gap tori for the 2D cubic NLS equation, J. Eur. Math. Soc. (JEMS), 2023, 25(4), 1497–1551.

    Google Scholar

    [27] M. Guardia, E. Haus and M. Procesi, \it Growth of Sobolev norms for the analytic NLS on $\Bbb{T}. 2$, Adv. Math., 2016, 301, 615–692. doi: 10.1016/j.aim.2016.06.018

    CrossRef Google Scholar

    [28] A. D. Ionescu and F. Pusateri, Nonlinear fractional Schrödinger equations in one dimension, J. Funct. Anal., 2014, 266(1), 139–176. doi: 10.1016/j.jfa.2013.08.027

    CrossRef Google Scholar

    [29] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006.

    Google Scholar

    [30] N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 2000, 268(4–6), 298–305. doi: 10.1016/S0375-9601(00)00201-2

    CrossRef Google Scholar

    [31] N. Laskin, Fractional Schrödinger equation, Phys. Rev. E, 2002, 66(5), 056108. doi: 10.1103/PhysRevE.66.056108

    CrossRef Google Scholar

    [32] J. Li, Quasi-periodic solutions of a fractional nonlinear Schrödinger equation, J. Math. Phys., 2017, 58(10), 102701. doi: 10.1063/1.5005106

    CrossRef Google Scholar

    [33] J. Liu and D. Xiang, Exact global control of small divisors in rational normal form, Nonlinearity, 2024, 37(7), Paper No. 075020, 48.

    Google Scholar

    [34] J. T. Machado, F. Mainardi and V. Kiryakova, Fractional calculus: Quo vadimus? (Where are we going?), Fract. Calc. Appl. Anal. 2015, 18(2), 495–526.

    Google Scholar

    [35] N. N. Nekhoroshev, An exponential estimate of the time of stability of nearly-integrable Hamiltonian systems, Russian Mathematical Surveys, 1977, 32(6), 5–66.

    Google Scholar

    [36] J. Pöschel, Nekhoroshev estimates for quasi-convex Hamiltonian systems, Math. Z., 1993, 213(2), 187–216.

    Google Scholar

    [37] Y. Sun, S. Li and X. Wu, Exponential and sub-exponential stability times for the derivative wave equation, Discrete Contin. Dyn. Syst., 2023, 43(6), 2186–2212. doi: 10.3934/dcds.2023007

    CrossRef Google Scholar

    [38] X. Wu and J. Zhao, Almost global existence for d-dimensional beam equation with derivative nonlinear perturbation, Qual. Theory Dyn. Syst., 2024, 23(2), Paper No. 51, 28.

    Google Scholar

    [39] Y. Wu and X. Yuan, On the existence of full dimensional KAM torus for fractional nonlinear Schrödinger equation, J. Appl. Anal. Comput., 2020, 10(2), 771–794.

    Google Scholar

    [40] X. Xu, Quasi-periodic solutions for fractional nonlinear Schrödinger equation, J. Dynam. Differential Equations, 2018, 30(4), 1855–1871. doi: 10.1007/s10884-017-9630-2

    CrossRef Google Scholar

    [41] X. Yang, J. Zhang and J. Liu, Long time stability of fractional nonlinear Schrödinger equations, J. Math. Anal. Appl., 2025, 544(1), 129035. doi: 10.1016/j.jmaa.2024.129035

    CrossRef Google Scholar

    [42] X. Yuan and J. Zhang, Long time stability of Hamiltonian partial differential equations, SIAM J. Math. Anal., 2014, 46(5), 3176–3222. doi: 10.1137/120900976

    CrossRef Google Scholar

    [43] J. Zhang, Almost global solutions to Hamiltonian derivative nonlinear Schrödinger equations on the circle, J. Dynam. Differential Equations, 2020, 32(3), 1401–1455. doi: 10.1007/s10884-019-09773-y

    CrossRef Google Scholar

Article Metrics

Article views(17) PDF downloads(7) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint