Citation: | Xue Yang, Jieyu Liu, Jing Zhang. A NEKHOROSHEV TYPE THEOREM FOR THE FRACTIONAL NONLINEAR SCHRÖDINGER EQUATION[J]. Journal of Applied Analysis & Computation, 2025, 15(6): 3317-3344. doi: 10.11948/20240555 |
We prove a Nekhoroshev type theorem for the fractional nonlinear Schrödinger equation under Dirichlet boundary conditions. More precisely, our findings show that the solutions with $ \varepsilon $-small initial data in the Gevrey space remain in their small magnitude over time intervals of order $ \varepsilon^{-\lvert \ln\varepsilon\rvert^{\gamma}} $ with $ 0 <\gamma<1/10 $. The result can be proved by using Birkhoff normal form method and the so-called tame property of the nonlinearity in Gevrey space.
[1] | D. Bambusi and B. Grébert, Birkhoff normal form for partial differential equations with tame modulus, Duke Math. J., 2006, 135(3), 507–567. |
[2] | D. Bambusi, B. Grébert, A. Maspero and D. Robert, Growth of Sobolev norms for abstract linear Schrödinger equations, J. Eur. Math. Soc. (JEMS), 2021, 23(2), 557–583. |
[3] | D. Bambusi, B. Langella and R. Montalto, Growth of Sobolev norms for unbounded perturbations of the Schrödinger equation on flat tori, J. Differential Equations, 2022, 318, 344–358. doi: 10.1016/j.jde.2022.02.024 |
[4] | D. Bambusi and Y. Sire, Almost global existence for a fractional Schrödinger equation on spheres and tori, Dyn. Partial Differ. Equ., 2013, 10(2), 171–176. doi: 10.4310/DPDE.2013.v10.n2.a3 |
[5] | S. Barbieri, J. P. Marco and J. E. Massetti, Analytic smoothing and Nekhoroshev estimates for Hölder steep Hamiltonians, Comm. Math. Phys., 2022, 396(1), 349–381. doi: 10.1007/s00220-022-04464-0 |
[6] | G. Benettin, J. Fröhlich and A. Giorgilli, A Nekhoroshev-type theorem for Hamiltonian systems with infinitely many degrees of freedom, Comm. Math. Phys., 1988, 119(1), 95–108. doi: 10.1007/BF01218262 |
[7] | J. Bernier, E. Faou and B. Grébert, Rational normal forms and stability of small solutions to nonlinear Schrödinger equations, Ann. PDE, 2020, 6(2), Paper No. 14, 65. |
[8] | J. Bernier and B. Grébert, Long time dynamics for generalized Korteweg-de Vries and Benjamin-Ono equations, Arch. Ration. Mech. Anal., 2021, 241(3), 1139–1241. doi: 10.1007/s00205-021-01666-z |
[9] | M. Berti, R. Feola and L. Franzoi, Quadratic life span of periodic gravity-capillary water waves, Water Waves, 2021, 3(1), 85–115. doi: 10.1007/s42286-020-00036-8 |
[10] | M. Berti, R. Feola and F. Pusateri, Birkhoff normal form for gravity water waves, Water Waves, 2021, 3(1), 117–126. doi: 10.1007/s42286-020-00024-y |
[11] | L. Biasco, J. E. Massetti and M. Procesi, An abstract Birkhoff normal form theorem and exponential type stability of the 1d NLS, Comm. Math. Phys., 2020, 375(3), 2089–2153. doi: 10.1007/s00220-019-03618-x |
[12] | J. Bourgain, Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equations, Geom. Funct. Anal., 1996, 6(2), 201–230. doi: 10.1007/BF02247885 |
[13] | J. Bourgain, On diffusion in high-dimensional Hamiltonian systems and PDE, J. Anal. Math., 2000, 80, 1–35. doi: 10.1007/BF02791532 |
[14] | Q. Chen, H. Cong, L. Meng and X. Wu, Long time stability result for 1-dimensional nonlinear Schrödinger equation, J. Differential Equations, 2022, 315, 90–121. doi: 10.1016/j.jde.2022.01.032 |
[15] | J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation, Invent. Math., 2010, 181(1), 39–113. doi: 10.1007/s00222-010-0242-2 |
[16] | H. Cong, S. Li and X. Wu, Long time stability result for $d$-dimensional nonlinear Schrödinger equation, J. Differential Equations, 2024, 394, 174–208. doi: 10.1016/j.jde.2024.02.048 |
[17] | H. Cong, C. Liu and P. Wang, A Nekhoroshev type theorem for the nonlinear wave equation, J. Differential Equations, 2020, 269(4), 3853–3889. doi: 10.1016/j.jde.2020.03.015 |
[18] | J. M. Delort, Long-time Sobolev stability for small solutions of quasi-linear Klein-Gordon equations on the circle, Trans. Amer. Math. Soc., 2009, 361(8), 4299–4365. doi: 10.1090/S0002-9947-09-04747-3 |
[19] | J. M. Delort, Quasi-linear perturbations of Hamiltonian Klein-Gordon equations on spheres, Mem. Amer. Math. Soc., 2015, 234(1103), vi+80. |
[20] | J. M. Delort and J. Szeftel, Long-time existence for small data nonlinear Klein-Gordon equations on tori and spheres, Int. Math. Res. Not., 2004, 37, 1897–1966. |
[21] | J. M. Delort and J. Szeftel, Long-time existence for semi-linear Klein-Gordon equations with small Cauchy data on Zoll manifolds, Amer. J. Math., 2006, 128(5), 187–1218. |
[22] | J. L. A. Dubbeldam, Z. Tomovski and T. Sandev, Space-time fractional Schrödinger equation with composite time fractional derivative, Fract. Calc. Appl. Anal., 2015, 18(5), 1179–1200. doi: 10.1515/fca-2015-0068 |
[23] | E. Faou and B. Grébert, A Nekhoroshev-type theorem for the nonlinear Schrödinger equation on the torus, Anal. PDE, 2013, 6(6), 1243–1262. doi: 10.2140/apde.2013.6.1243 |
[24] | P. Felmer, A. Quaas and J. Tan, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 2012, 142(6), 1237–1262. doi: 10.1017/S0308210511000746 |
[25] | F. Giuliani, Transfers of energy through fast diffusion channels in some resonant PDEs on the circle, Discrete Contin. Dyn. Syst., 2021, 41(11), 5057–5085. doi: 10.3934/dcds.2021068 |
[26] | M. Guardia, Z. Hani, E. Haus, A. Maspero and M. Procesi, Strong nonlinear instability and growth of Sobolev norms near quasiperiodic finite gap tori for the 2D cubic NLS equation, J. Eur. Math. Soc. (JEMS), 2023, 25(4), 1497–1551. |
[27] | M. Guardia, E. Haus and M. Procesi, \it Growth of Sobolev norms for the analytic NLS on $\Bbb{T}. 2$, Adv. Math., 2016, 301, 615–692. doi: 10.1016/j.aim.2016.06.018 |
[28] | A. D. Ionescu and F. Pusateri, Nonlinear fractional Schrödinger equations in one dimension, J. Funct. Anal., 2014, 266(1), 139–176. doi: 10.1016/j.jfa.2013.08.027 |
[29] | A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006. |
[30] | N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 2000, 268(4–6), 298–305. doi: 10.1016/S0375-9601(00)00201-2 |
[31] | N. Laskin, Fractional Schrödinger equation, Phys. Rev. E, 2002, 66(5), 056108. doi: 10.1103/PhysRevE.66.056108 |
[32] | J. Li, Quasi-periodic solutions of a fractional nonlinear Schrödinger equation, J. Math. Phys., 2017, 58(10), 102701. doi: 10.1063/1.5005106 |
[33] | J. Liu and D. Xiang, Exact global control of small divisors in rational normal form, Nonlinearity, 2024, 37(7), Paper No. 075020, 48. |
[34] | J. T. Machado, F. Mainardi and V. Kiryakova, Fractional calculus: Quo vadimus? (Where are we going?), Fract. Calc. Appl. Anal. 2015, 18(2), 495–526. |
[35] | N. N. Nekhoroshev, An exponential estimate of the time of stability of nearly-integrable Hamiltonian systems, Russian Mathematical Surveys, 1977, 32(6), 5–66. |
[36] | J. Pöschel, Nekhoroshev estimates for quasi-convex Hamiltonian systems, Math. Z., 1993, 213(2), 187–216. |
[37] | Y. Sun, S. Li and X. Wu, Exponential and sub-exponential stability times for the derivative wave equation, Discrete Contin. Dyn. Syst., 2023, 43(6), 2186–2212. doi: 10.3934/dcds.2023007 |
[38] | X. Wu and J. Zhao, Almost global existence for d-dimensional beam equation with derivative nonlinear perturbation, Qual. Theory Dyn. Syst., 2024, 23(2), Paper No. 51, 28. |
[39] | Y. Wu and X. Yuan, On the existence of full dimensional KAM torus for fractional nonlinear Schrödinger equation, J. Appl. Anal. Comput., 2020, 10(2), 771–794. |
[40] | X. Xu, Quasi-periodic solutions for fractional nonlinear Schrödinger equation, J. Dynam. Differential Equations, 2018, 30(4), 1855–1871. doi: 10.1007/s10884-017-9630-2 |
[41] | X. Yang, J. Zhang and J. Liu, Long time stability of fractional nonlinear Schrödinger equations, J. Math. Anal. Appl., 2025, 544(1), 129035. doi: 10.1016/j.jmaa.2024.129035 |
[42] | X. Yuan and J. Zhang, Long time stability of Hamiltonian partial differential equations, SIAM J. Math. Anal., 2014, 46(5), 3176–3222. doi: 10.1137/120900976 |
[43] | J. Zhang, Almost global solutions to Hamiltonian derivative nonlinear Schrödinger equations on the circle, J. Dynam. Differential Equations, 2020, 32(3), 1401–1455. doi: 10.1007/s10884-019-09773-y |