2025 Volume 15 Issue 4
Article Contents

Hui Zhao, Ji-Jun Ao. INVERSE SPECTRAL PROBLEM FOR STURM-LIOUVILLE OPERATOR WITH BOTH JUMP CONDITIONS DEPENDENT ON THE SPECTRAL PARAMETER[J]. Journal of Applied Analysis & Computation, 2025, 15(4): 1961-1974. doi: 10.11948/20240367
Citation: Hui Zhao, Ji-Jun Ao. INVERSE SPECTRAL PROBLEM FOR STURM-LIOUVILLE OPERATOR WITH BOTH JUMP CONDITIONS DEPENDENT ON THE SPECTRAL PARAMETER[J]. Journal of Applied Analysis & Computation, 2025, 15(4): 1961-1974. doi: 10.11948/20240367

INVERSE SPECTRAL PROBLEM FOR STURM-LIOUVILLE OPERATOR WITH BOTH JUMP CONDITIONS DEPENDENT ON THE SPECTRAL PARAMETER

  • Author Bio: Email: 15534445382@163.com(H. Zhao)
  • Corresponding author: Email: george_ao78@sohu.com(J.-J. Ao)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (No. 12261066) and Natural Science Foundation of Inner Mongolia Autonomous Region (Nos. 2021MS01020, 2023LHMS01015)
  • The inverse spectral problem of Sturm-Liouville operator with both of the jump conditions dependent on the spectral parameter is investigated. Firstly, by theoretical operator formulation the self-adjointness of the problem is proven and then some of the eigenvalue properties, especially the asymptotic formulas of eigenvalues and eigenfunctions are given. Finally, the uniqueness theorems of the corresponding inverse problems are given by Weyl function theory and inverse spectral data approach.

    MSC: 34A55, 34B24, 34L05, 47A45
  • 加载中
  • [1] Z. Akdoǧan, M. Demirci and O. Sh. Mukhtarov, Discontinuous Sturm-Liouville problems with eigenparameter-dependent boundary and transmissions conditions, Acta. Appl. Math., 2005, 86, 329–344. doi: 10.1007/s10440-004-7466-3

    CrossRef Google Scholar

    [2] V. A. Ambarzumian, Über eine frage der eigenwerttheorie, Z. Phys., 1929, 53, 690–695. doi: 10.1007/BF01330827

    CrossRef Google Scholar

    [3] C. Bartels, S. Currie, M. Nowaczyk and B. A. Watson, Sturm-Liouville problems with transfer condition Herglotz dependent on the eigenparameter: Hilbert space formulation, Integral Equations Operator Theory, 2018, 90, 34–53. doi: 10.1007/s00020-018-2463-5

    CrossRef Google Scholar

    [4] C. Bartels, S. Currie and B. A. Watson, Sturm-Liouville problems with transfer condition Herglotz dependent on the eigenparameter: eigenvalue asymptotics, Complex Anal. Oper. Theory., 2021, 15, 71–99. doi: 10.1007/s11785-021-01119-1

    CrossRef Google Scholar

    [5] P. Binding, P. Browne and B. A. Watson, Inverse spectral problems for Sturm-Liouville equations with eigenparameter dependent boundary conditions, J. Lond. Math. Soc., 2000, 62, 161–182. doi: 10.1112/S0024610700008899

    CrossRef Google Scholar

    [6] N. P. Bondarenko, Inverse spectral problem for the third-order differential equation, Results Math., 2023, 78, 179. doi: 10.1007/s00025-023-01955-x

    CrossRef Google Scholar

    [7] N. P. Bondarenko and E. E. Chitorkin, Inverse Sturm-Liouville problem with spectral parameter in the boundary conditions, Mathematics, 2023, 11.

    Google Scholar

    [8] G. Borg, Eine umkehrung der Sturm-Liouvilleschen eigenwertaufgabe, Acta Math., 1946, 78, 1–96. doi: 10.1007/BF02421600

    CrossRef Google Scholar

    [9] R. Carlson, Hearing point masses in a string, SIAM J. Math. Anal., 1995, 26, 583–600. doi: 10.1137/S0036141093244283

    CrossRef Google Scholar

    [10] A. Erg$\ddot{u}$n and R. Amirov, Half inverse problem for diffusion operators with jump conditions dependent on the spectral parameter, Numer. Methods Partial Differential Equations, 2022, 38, 577–590.

    Google Scholar

    [11] G. Freiling and V. A. Yurko, Inverse Sturm-Liouville Problems and Their Applications, Nova Science Publishers, Inc. 2001.

    Google Scholar

    [12] G. Freiling and V. A. Yurko, Inverse problems for Sturm-Liouville equations with boundary conditions polynomially dependent on the spectral parameter, Inverse Problems, 2010, 26, 055003. doi: 10.1088/0266-5611/26/5/055003

    CrossRef Google Scholar

    [13] N. J. Guliyev, Schrödinger operators with distributional potentials and boundary conditions dependent on the eigenvalue parameter, J. Math. Phys., 2019, 60, 063501. doi: 10.1063/1.5048692

    CrossRef Google Scholar

    [14] N. J. Guliyev, Essentially isospectral transformations and their applications, Ann. Mat. Pura Appl., 2020, 199, 1621–1648. doi: 10.1007/s10231-019-00934-w

    CrossRef Google Scholar

    [15] N. J. Guliyev, Inverse eigenvalue problems for Sturm-Liouville equations with spectral parameter linearly contained in one of the boundary condition, Inverse Problems, 2005, 21, 1315–1330. doi: 10.1088/0266-5611/21/4/008

    CrossRef Google Scholar

    [16] Y. X. Guo and G. S. Wei, On the reconstruction of the Sturm-Liouville problems with spectral parameter in the discontinuity conditions, Results Math., 2014, 65, 385–398. doi: 10.1007/s00025-013-0352-4

    CrossRef Google Scholar

    [17] O. H. Hald. Discontinuous inverse eigenvalue problems, Commu. Pure. Appl. Math., 1984, 37, 539–577. doi: 10.1002/cpa.3160370502

    CrossRef Google Scholar

    [18] A. Kabata$\mathfrak{s}$, One boundary value problem including a spectral parameter in all boundary conditions, Opuscula Math., 2023, 43, 651–661. doi: 10.7494/OpMath.2023.43.5.651

    CrossRef Google Scholar

    [19] Y. Khalili and N. Kadkhoda, An inverse problem for discontinuous Sturm-Liouville equations with non-separated boundary conditions, Iran. J. Sci. Technol. Trans. A Sci., 2020, 44, 493–495. doi: 10.1007/s40995-020-00854-y

    CrossRef Google Scholar

    [20] K. Li, Y. Bai, W. Y. Wang and F. W. Meng, Self-adjoint realization of a class of third-order differential operators witn an eigenparameter contained in the boundary conditions, J. Appl. Anal. Comput., 2020, 10, 2631–2643.

    Google Scholar

    [21] V. A. Marchenko, Some questions in the theory of one-dimensinal linear differential operators of the second oeder, Am. Math. Soc. Transl., 1973, 101, 1–104.

    Google Scholar

    [22] A. S. Ozkan and B. Keskin, Spectral problems for Sturm-Liouville operator with boundary and jump conditions linearly dependent on the eigenparameter, Inverse Probl. Sci. Eng., 2012, 20, 799–808. doi: 10.1080/17415977.2011.652957

    CrossRef Google Scholar

    [23] J. P$\ddot{o}$schel and E. Trubowitz, Inverse Spectral Theory, Academic Press, Orlando, 1987.

    Google Scholar

    [24] H. Schmid and C. Tretter, Singular Dirac systems and Sturm-Liouville problems nonlinear in the spectral parameter, J. Diff. Eqs., 2002, 181, 511–542. doi: 10.1006/jdeq.2001.4082

    CrossRef Google Scholar

    [25] C. Tretter, Boundary eigenvalue problems with differential equations $N\eta=\lambda P\eta$ with $\lambda$-polynomial boundary conditions, J. Diff. Eqs., 2001, 170, 408–471. doi: 10.1006/jdeq.2000.3829

    CrossRef $N\eta=\lambda P\eta$ with $\lambda$-polynomial boundary conditions" target="_blank">Google Scholar

    [26] J. Walter, Regular eigenvalue problems with eigenvalue parameter in the boundary conditions, Math. Z., 1973, 133, 301–312. doi: 10.1007/BF01177870

    CrossRef Google Scholar

    [27] Y. P. Wang, Inverse problems for Sturm-Liouville operators with interior discontinuities and boundary conditions dependent on the spectral parameter, Math. Methods Appl. Sci., 2013, 36, 857–868. doi: 10.1002/mma.2662

    CrossRef Google Scholar

    [28] Z. Y. Wei and G. S. Wei, Inverse spectral problem for non selfadjoint Dirac operator with boundary and jump conditions dependent on the spectral parameter, J. Comput. Appl. Math., 2016, 308, 199–214. doi: 10.1016/j.cam.2016.05.018

    CrossRef Google Scholar

    [29] C. F. Yang, Inverse problems for the Sturm-Liouville operator with discontinuity, Inverse Probl. Sci. Eng., 2014, 22, 232–244. doi: 10.1080/17415977.2013.764521

    CrossRef Google Scholar

    [30] C. F. Yang and Z. Y. Huang, A half-inverse problem with eigenparameter dependent boundary conditions, Numer. Funct. Anal. Optim., 2010, 31, 754–762. doi: 10.1080/01630563.2010.490934

    CrossRef Google Scholar

    [31] C. F. Yang and X. P. Yang, An interior inverse problem for the Sturm-Liouville operator with discontinuous conditions, Appl. Math. Lett., 2009, 22, 1315–1319. doi: 10.1016/j.aml.2008.12.001

    CrossRef Google Scholar

    [32] V. A. Yurko, Inverse spectral problems for Sturm-Liouville operators with complex weights, Inverse Probl. Sci. Eng., 2018, 26, 1396–1403. doi: 10.1080/17415977.2017.1400030

    CrossRef Google Scholar

    [33] H. Y. Zhang, J. J. Ao and D. Mu, Eigenvalues of discontinuous third-order boundary value problems with eigenparameter-dependent boundary conditions, J. Math. Anal. Appl., 2022, 506, 125680. doi: 10.1016/j.jmaa.2021.125680

    CrossRef Google Scholar

    [34] L. Zhang and J. J. Ao, On a class of inverse Sturm-Liouville problems with eigenparameter dependent boundary conditions, Appl. Math. Comput., 2019, 362, 124553.

    Google Scholar

    [35] N. Zhang and J. J. Ao, Finite spectrum of Sturm-Liouville problems with transmission conditions dependent on the spectral parameter, Numer. Funct. Anal. Optim., 2023, 44, 21–35. doi: 10.1080/01630563.2022.2150641

    CrossRef Google Scholar

Article Metrics

Article views(605) PDF downloads(173) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint