Citation: | Hui Zhao, Ji-Jun Ao. INVERSE SPECTRAL PROBLEM FOR STURM-LIOUVILLE OPERATOR WITH BOTH JUMP CONDITIONS DEPENDENT ON THE SPECTRAL PARAMETER[J]. Journal of Applied Analysis & Computation, 2025, 15(4): 1961-1974. doi: 10.11948/20240367 |
The inverse spectral problem of Sturm-Liouville operator with both of the jump conditions dependent on the spectral parameter is investigated. Firstly, by theoretical operator formulation the self-adjointness of the problem is proven and then some of the eigenvalue properties, especially the asymptotic formulas of eigenvalues and eigenfunctions are given. Finally, the uniqueness theorems of the corresponding inverse problems are given by Weyl function theory and inverse spectral data approach.
[1] | Z. Akdoǧan, M. Demirci and O. Sh. Mukhtarov, Discontinuous Sturm-Liouville problems with eigenparameter-dependent boundary and transmissions conditions, Acta. Appl. Math., 2005, 86, 329–344. doi: 10.1007/s10440-004-7466-3 |
[2] | V. A. Ambarzumian, Über eine frage der eigenwerttheorie, Z. Phys., 1929, 53, 690–695. doi: 10.1007/BF01330827 |
[3] | C. Bartels, S. Currie, M. Nowaczyk and B. A. Watson, Sturm-Liouville problems with transfer condition Herglotz dependent on the eigenparameter: Hilbert space formulation, Integral Equations Operator Theory, 2018, 90, 34–53. doi: 10.1007/s00020-018-2463-5 |
[4] | C. Bartels, S. Currie and B. A. Watson, Sturm-Liouville problems with transfer condition Herglotz dependent on the eigenparameter: eigenvalue asymptotics, Complex Anal. Oper. Theory., 2021, 15, 71–99. doi: 10.1007/s11785-021-01119-1 |
[5] | P. Binding, P. Browne and B. A. Watson, Inverse spectral problems for Sturm-Liouville equations with eigenparameter dependent boundary conditions, J. Lond. Math. Soc., 2000, 62, 161–182. doi: 10.1112/S0024610700008899 |
[6] | N. P. Bondarenko, Inverse spectral problem for the third-order differential equation, Results Math., 2023, 78, 179. doi: 10.1007/s00025-023-01955-x |
[7] | N. P. Bondarenko and E. E. Chitorkin, Inverse Sturm-Liouville problem with spectral parameter in the boundary conditions, Mathematics, 2023, 11. |
[8] | G. Borg, Eine umkehrung der Sturm-Liouvilleschen eigenwertaufgabe, Acta Math., 1946, 78, 1–96. doi: 10.1007/BF02421600 |
[9] | R. Carlson, Hearing point masses in a string, SIAM J. Math. Anal., 1995, 26, 583–600. doi: 10.1137/S0036141093244283 |
[10] | A. Erg$\ddot{u}$n and R. Amirov, Half inverse problem for diffusion operators with jump conditions dependent on the spectral parameter, Numer. Methods Partial Differential Equations, 2022, 38, 577–590. |
[11] | G. Freiling and V. A. Yurko, Inverse Sturm-Liouville Problems and Their Applications, Nova Science Publishers, Inc. 2001. |
[12] | G. Freiling and V. A. Yurko, Inverse problems for Sturm-Liouville equations with boundary conditions polynomially dependent on the spectral parameter, Inverse Problems, 2010, 26, 055003. doi: 10.1088/0266-5611/26/5/055003 |
[13] | N. J. Guliyev, Schrödinger operators with distributional potentials and boundary conditions dependent on the eigenvalue parameter, J. Math. Phys., 2019, 60, 063501. doi: 10.1063/1.5048692 |
[14] | N. J. Guliyev, Essentially isospectral transformations and their applications, Ann. Mat. Pura Appl., 2020, 199, 1621–1648. doi: 10.1007/s10231-019-00934-w |
[15] | N. J. Guliyev, Inverse eigenvalue problems for Sturm-Liouville equations with spectral parameter linearly contained in one of the boundary condition, Inverse Problems, 2005, 21, 1315–1330. doi: 10.1088/0266-5611/21/4/008 |
[16] | Y. X. Guo and G. S. Wei, On the reconstruction of the Sturm-Liouville problems with spectral parameter in the discontinuity conditions, Results Math., 2014, 65, 385–398. doi: 10.1007/s00025-013-0352-4 |
[17] | O. H. Hald. Discontinuous inverse eigenvalue problems, Commu. Pure. Appl. Math., 1984, 37, 539–577. doi: 10.1002/cpa.3160370502 |
[18] | A. Kabata$\mathfrak{s}$, One boundary value problem including a spectral parameter in all boundary conditions, Opuscula Math., 2023, 43, 651–661. doi: 10.7494/OpMath.2023.43.5.651 |
[19] | Y. Khalili and N. Kadkhoda, An inverse problem for discontinuous Sturm-Liouville equations with non-separated boundary conditions, Iran. J. Sci. Technol. Trans. A Sci., 2020, 44, 493–495. doi: 10.1007/s40995-020-00854-y |
[20] | K. Li, Y. Bai, W. Y. Wang and F. W. Meng, Self-adjoint realization of a class of third-order differential operators witn an eigenparameter contained in the boundary conditions, J. Appl. Anal. Comput., 2020, 10, 2631–2643. |
[21] | V. A. Marchenko, Some questions in the theory of one-dimensinal linear differential operators of the second oeder, Am. Math. Soc. Transl., 1973, 101, 1–104. |
[22] | A. S. Ozkan and B. Keskin, Spectral problems for Sturm-Liouville operator with boundary and jump conditions linearly dependent on the eigenparameter, Inverse Probl. Sci. Eng., 2012, 20, 799–808. doi: 10.1080/17415977.2011.652957 |
[23] | J. P$\ddot{o}$schel and E. Trubowitz, Inverse Spectral Theory, Academic Press, Orlando, 1987. |
[24] | H. Schmid and C. Tretter, Singular Dirac systems and Sturm-Liouville problems nonlinear in the spectral parameter, J. Diff. Eqs., 2002, 181, 511–542. doi: 10.1006/jdeq.2001.4082 |
[25] |
C. Tretter, Boundary eigenvalue problems with differential equations $N\eta=\lambda P\eta$ with $\lambda$-polynomial boundary conditions, J. Diff. Eqs., 2001, 170, 408–471. doi: 10.1006/jdeq.2000.3829
CrossRef $N\eta=\lambda P\eta$ with |
[26] | J. Walter, Regular eigenvalue problems with eigenvalue parameter in the boundary conditions, Math. Z., 1973, 133, 301–312. doi: 10.1007/BF01177870 |
[27] | Y. P. Wang, Inverse problems for Sturm-Liouville operators with interior discontinuities and boundary conditions dependent on the spectral parameter, Math. Methods Appl. Sci., 2013, 36, 857–868. doi: 10.1002/mma.2662 |
[28] | Z. Y. Wei and G. S. Wei, Inverse spectral problem for non selfadjoint Dirac operator with boundary and jump conditions dependent on the spectral parameter, J. Comput. Appl. Math., 2016, 308, 199–214. doi: 10.1016/j.cam.2016.05.018 |
[29] | C. F. Yang, Inverse problems for the Sturm-Liouville operator with discontinuity, Inverse Probl. Sci. Eng., 2014, 22, 232–244. doi: 10.1080/17415977.2013.764521 |
[30] | C. F. Yang and Z. Y. Huang, A half-inverse problem with eigenparameter dependent boundary conditions, Numer. Funct. Anal. Optim., 2010, 31, 754–762. doi: 10.1080/01630563.2010.490934 |
[31] | C. F. Yang and X. P. Yang, An interior inverse problem for the Sturm-Liouville operator with discontinuous conditions, Appl. Math. Lett., 2009, 22, 1315–1319. doi: 10.1016/j.aml.2008.12.001 |
[32] | V. A. Yurko, Inverse spectral problems for Sturm-Liouville operators with complex weights, Inverse Probl. Sci. Eng., 2018, 26, 1396–1403. doi: 10.1080/17415977.2017.1400030 |
[33] | H. Y. Zhang, J. J. Ao and D. Mu, Eigenvalues of discontinuous third-order boundary value problems with eigenparameter-dependent boundary conditions, J. Math. Anal. Appl., 2022, 506, 125680. doi: 10.1016/j.jmaa.2021.125680 |
[34] | L. Zhang and J. J. Ao, On a class of inverse Sturm-Liouville problems with eigenparameter dependent boundary conditions, Appl. Math. Comput., 2019, 362, 124553. |
[35] | N. Zhang and J. J. Ao, Finite spectrum of Sturm-Liouville problems with transmission conditions dependent on the spectral parameter, Numer. Funct. Anal. Optim., 2023, 44, 21–35. doi: 10.1080/01630563.2022.2150641 |