2025 Volume 15 Issue 4
Article Contents

Qixing Han, Lidong Zhou. ASYMPTOTIC PROPERTIES OF A STOCHASTIC ECO-EPIDEMIOLOGICAL MODEL WITH FEAR EFFECT AND HUNTING COOPERATION[J]. Journal of Applied Analysis & Computation, 2025, 15(4): 1975-1995. doi: 10.11948/20240374
Citation: Qixing Han, Lidong Zhou. ASYMPTOTIC PROPERTIES OF A STOCHASTIC ECO-EPIDEMIOLOGICAL MODEL WITH FEAR EFFECT AND HUNTING COOPERATION[J]. Journal of Applied Analysis & Computation, 2025, 15(4): 1975-1995. doi: 10.11948/20240374

ASYMPTOTIC PROPERTIES OF A STOCHASTIC ECO-EPIDEMIOLOGICAL MODEL WITH FEAR EFFECT AND HUNTING COOPERATION

  • Author Bio: Email: zhoulidong2000@163.com(L. Zhou)
  • Corresponding author: Email: hanqixing123@163.com(Q. Han) 
  • Fund Project: The authors were supported by Foundation of Jilin Province Science and Technology Development (YDZJ202501ZYTS615), Scientific Rsearch Foundation of Jilin Provincial Education Department (JJKH20251033KJ), NSF of China (No. 11801041)
  • In this paper, we put forward and analyze a stochastic eco- epidemiological model with disease in the prey population, which incorporates fear effect of predators on prey and hunting cooperation among predators. We find out sufficient criteria for the existence and uniqueness of an ergodic stationary distribution of positive solutions to the system by using the stochastic Lyapunov function methods. Moreover, we also derive sufficient criteria for extinction of the infected prey population and the predator population. Additionally, we give the specific expression of the probability density function of the stochastic model near the unique endemic quasi-equilibrium by solving the Fokker-Planck equation. In the end, the supporting theoretical results are verified by numerical simulation.

    MSC: 60H10, 92B05
  • 加载中
  • [1] A. Ali, S. Khan, I. Ali and F. U. Khan, On dynamics of stochastic avian influenza model with asymptomatic carrier using spectral method, Math. Method. Appl. Sci., 2022, 45, 8230–8246. doi: 10.1002/mma.8183

    CrossRef Google Scholar

    [2] J. Chattopadhyay and O. Arino, A predator-prey model with disease in the prey, Nonlinear Anal., 1999, 36(6), 747–766. doi: 10.1016/S0362-546X(98)00126-6

    CrossRef Google Scholar

    [3] N. Dalal, D. Greenhalgh and X. Mao, A stochastic model for internal HIV dynamics, J. Math. Anal. Appl., 2008, 341(2), 1084–1101. doi: 10.1016/j.jmaa.2007.11.005

    CrossRef Google Scholar

    [4] H. Hethcote, W. Wang, L. Han and Z. Ma, A predator-prey model with infected prey, Theor. Popul. Biol., 2004, 66(3), 259–268. doi: 10.1016/j.tpb.2004.06.010

    CrossRef Google Scholar

    [5] D. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 2001, 43(3), 525–546. doi: 10.1137/S0036144500378302

    CrossRef Google Scholar

    [6] G. Hussain, A. Khan, M. Zahri and G. Zaman, Ergodicstationarydistribution ofstochastic epidemic model for HBV with double saturated incidence rates and vaccination, Chaos. Soliton. Fract., 2022, 160, 112195. doi: 10.1016/j.chaos.2022.112195

    CrossRef Google Scholar

    [7] C. Ji, D. Jiang and N. Shi, Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with stochastic perturbation, J. Math. Anal. Appl., 2009, 359(2), 482–498. doi: 10.1016/j.jmaa.2009.05.039

    CrossRef Google Scholar

    [8] R. Khasminskii, Stochastic Stability of Differential Equations, Springer Heidelberg Dordrecht London, New York, 2012.

    Google Scholar

    [9] Q. Liu, Dynamical analysis of a stochastic maize streak virus epidemic model with logarithmic Ornstein-Uhlenbeck process, J. Math. Biol., 2024, 89(3), 1–75.

    Google Scholar

    [10] Q. Liu and D. Jiang, Stationary distribution and probability density for a stochastic SEIR-type model of coronavirus COVID-19 with asymptomatic carriers, Chaos. Soliton. Fract., 2023, 169, 113256. doi: 10.1016/j.chaos.2023.113256

    CrossRef Google Scholar

    [11] Q. Liu, D. Jiang, N. Shi, T. Hayat and B. Ahmad, Stationary distribution and extinction of a stochastic SEIR epidemic model with standard incidence, Phys. A., 2017, 469, 510–517. doi: 10.1016/j.physa.2016.11.077

    CrossRef Google Scholar

    [12] J. Liu, B. Liu, P. Lv and T. Zhang, An eco-epidemiological model with fear effect and hunting cooperation, Chaos. Soliton. Fract., 2020, 142, 110494.

    Google Scholar

    [13] K. Mamis and M. Farazmand, Stochastic compartmental models of COVID-19 pandemic must have temporally correlated uncertainties, Proc. R. Soc. A-Math. Phys., 2023, 479, 20220568.

    Google Scholar

    [14] X. Mao, Stochastic Differential Equations and Applications, Horwood Publishing, Chichester, 1997.

    Google Scholar

    [15] S. Meyn and R. Tweedie, Stability of Markovian processes III: Foster-Lyapunov criteria for continuous-time processes, Dav. Appl. Prob., 1993, 25, 518–548.

    Google Scholar

    [16] P. Panday, S. Samanta, N. Pal and J. Chattopadhyay, Delay induced multiple stability switch and chaos in a predator prey model with fear effect, Math. Comput. Simulat., 2019, 172, 134–158.

    Google Scholar

    [17] H. Qi, S. Zhang, X. Meng and H. Dong, Periodic solution and ergodic stationary distribution of two stochastic SIQS epidemic systems, Phys. A., 2018, 508, 223–241. doi: 10.1016/j.physa.2018.05.075

    CrossRef Google Scholar

    [18] H. Roozen, An asymptotic solution to a two-dimensional exit problem arising in population dynamics, SIAM J. Appl. Math., 1989, 49(6), 1793–1810. doi: 10.1137/0149110

    CrossRef Google Scholar

    [19] Y. Tan, Y. Cai, X. Sun, K. Wang, R. Yao, W. Wang and Z. Peng, A stochastic SICA model for HIV/AIDS transmission, Chaos. Soliton. Fract., 2022, 165, 112768. doi: 10.1016/j.chaos.2022.112768

    CrossRef Google Scholar

    [20] E. Venturino, Epidemics in predator-prey models: Disease in the predators, IMA J. Math. Appl. Med. Biol., 2002, 19(3), 185–205. doi: 10.1093/imammb/19.3.185

    CrossRef Google Scholar

    [21] J. Wang and S. Liu, Persistence and extinction of the tumor-immune stochastic model with effector cells and cytokines, J. Appl. Anal. Comput., 2020, 13, 655–670.

    Google Scholar

    [22] X. Wang, L. Zanette and X. Zou, Modelling the fear effect in predator-prey interactions, J. Math. Biol., 2016, 73, 1179–1204. doi: 10.1007/s00285-016-0989-1

    CrossRef Google Scholar

    [23] Y. Xiao and L. Chen, Modelling and analysis of a predator-prey model with disease in the prey, Math. Biosci., 2001, 171(1), 59–82. doi: 10.1016/S0025-5564(01)00049-9

    CrossRef Google Scholar

    [24] Q. Zhang, D. Jiang, Z. Liu and D. O'Regan, Asymptotic behavior of a three species eco-epidemiological model perturbed by white noise, J. Math. Anal. Appl., 2016, 433, 121–148. doi: 10.1016/j.jmaa.2015.07.025

    CrossRef Google Scholar

    [25] B. Zhou, X. Zhang and D. Jiang, Dynamics and density function analysis of a stochastic SVI epidemic model with half saturated incidence rate, Chaos. Soliton. Fract., 2020, 137, 109865. doi: 10.1016/j.chaos.2020.109865

    CrossRef Google Scholar

Figures(3)

Article Metrics

Article views(309) PDF downloads(141) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint