2025 Volume 15 Issue 4
Article Contents

Shumin Zhou, Yunxian Dai, Hongyan Wang. STABILITY AND HOPF BIFURCATION ANALYSIS OF A NETWORKED SIR EPIDEMIC MODEL WITH TWO DELAYS AND DELAY DEPENDENT PARAMETERS[J]. Journal of Applied Analysis & Computation, 2025, 15(4): 1996-2026. doi: 10.11948/20240382
Citation: Shumin Zhou, Yunxian Dai, Hongyan Wang. STABILITY AND HOPF BIFURCATION ANALYSIS OF A NETWORKED SIR EPIDEMIC MODEL WITH TWO DELAYS AND DELAY DEPENDENT PARAMETERS[J]. Journal of Applied Analysis & Computation, 2025, 15(4): 1996-2026. doi: 10.11948/20240382

STABILITY AND HOPF BIFURCATION ANALYSIS OF A NETWORKED SIR EPIDEMIC MODEL WITH TWO DELAYS AND DELAY DEPENDENT PARAMETERS

  • The spread of infectious diseases is generally influenced by the random contact of different individuals in uneven spatial structure. To describe this contact effect, network is introduced into a two delays SIR epidemic model with incubation period delay and temporary immunity delay. Due to the existence of the temporary immunity term, the characteristic equation of epidemic model has two delays and the parameters depend on one of them. We prove the stability of the disease-free equilibrium and the endemic equilibrium. We additionally obtain the stability switching curves to study the stability switching properties of the endemic equilibrium on the two delays plane when two delays change simultaneously, and further discuss the existence of Hopf bifurcation. The stability and the direction of the Hopf bifurcation are investigated with the normal form method and center manifold theorem. To illustrate our theoretical conclusions visually, we performed numerical simulation on a small-world Watts-Strogatz graph.

    MSC: 34C23, 34C60
  • 加载中
  • [1] Q. An, E. Beretta, Y. Kuang, C. C. Wang and H. Wang, Geometric stability switch criteria in delay differential equations with two delays and delay dependent parameters, J. Differ. Equ., 2019, 266(11), 7073–7100. doi: 10.1016/j.jde.2018.11.025

    CrossRef Google Scholar

    [2] M. Barman and N. Mishra, Hopf bifurcation analysis for a delayed nonlinear-SEIR epidemic model on networks, Chaos Solitons Fractals, 2024, 178, 114351. doi: 10.1016/j.chaos.2023.114351

    CrossRef Google Scholar

    [3] J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Anim. Ecol., 1975, 44, 331–340. doi: 10.2307/3866

    CrossRef Google Scholar

    [4] E. Beretta and Y. Tang, Extension of a geometric stability switch criterion, Funkc Ekvacioj, 2003, 46(3), 337–361. doi: 10.1619/fesi.46.337

    CrossRef Google Scholar

    [5] C. J. Briggs and H. C. J. Godfray, The dynamics of insect-pathogen interactions in stage-structured populations, Am. Nat., 1995, 145(6), 855–887. doi: 10.1086/285774

    CrossRef Google Scholar

    [6] X. X. Cheng, Y. Wang and G. Huang, Global dynamics of a network-based SIQS epidemic model with nonmonotone incidence rate, Chaos Solitons Fractals., 2021, 153, 111502. doi: 10.1016/j.chaos.2021.111502

    CrossRef Google Scholar

    [7] P. H. Crowley and E. K. Martin, Functional responses and interference within and between year classes of a dragonfly population, J. N. Am. Benthol. Soc., 1989, 8(3), 211–221. doi: 10.2307/1467324

    CrossRef Google Scholar

    [8] B. Dubey, P. Dubey and U. S. Dubey, Dynamics of an SIR model with nonlinear incidence and treatment rate, Appl. Appl. Math., 2015, 10(2), 5.

    Google Scholar

    [9] B. Dubey, A. Patra, P. K. Srivastava and U. S. Dubey, Modeling and analysis of an SEIR model with different types of nonlinear treatment rates, J. Biol. Syst., 2013, 21(03), 1350023. doi: 10.1142/S021833901350023X

    CrossRef Google Scholar

    [10] P. Dubey, B. Dubey and U. S. Dubey, An SIR model with nonlinear incidence rate and Holling type III treatment rate, Applied Analysis in Biological and Physical Sciences: ICMBAA, Aligarh, India, June 2015. Springer India, 2016.

    Google Scholar

    [11] Y. Enatsu, Y. Nakata amd Y. Muroya, Global stability of SIRS epidemic models with a class of nonlinear incidence rates and distributed delays, Acta Math. Sci., 2012, 32(3), 851–865. doi: 10.1016/S0252-9602(12)60066-6

    CrossRef Google Scholar

    [12] S. J. Gao, L. S. Chen, J. J. Nieto and A. Torres, Analysis of a delayed epidemic model with pulse vaccination and saturation incidence, Vaccine., 2006, 24(35–36), 6037–6045. doi: 10.1016/j.vaccine.2006.05.018

    CrossRef Google Scholar

    [13] K. Goel, A. Kumar and Nilam, A deterministic time-delayed SVIRS epidemic model with incidences and saturated treatment, J. Eng. Math., 2020, 121(1), 19–38. doi: 10.1007/s10665-020-10037-8

    CrossRef Google Scholar

    [14] K. Goel, A. Kumar and Nilam, Stability analysis of a logistic growth epidemic model with two explicit time-delays, the nonlinear incidence and treatment rates, J. Appl. Math. Comput., 2022, 68(3), 1901–1928. doi: 10.1007/s12190-021-01601-1

    CrossRef Google Scholar

    [15] K. Goel and Nilam, A mathematical and numerical study of a SIR epidemic model with time delay, nonlinear incidence and treatment rates, Theory Biosci., 2019, 138(2), 203–213. doi: 10.1007/s12064-019-00275-5

    CrossRef Google Scholar

    [16] J. L. Herrera-Diestra, J. M. Buldu, M. Chavez and J. H. Martínez, Using symbolic networks to analyse dynamical properties of disease outbreaks, P. Roy. Soc. A-Math. Phy., 2020, 476(2236), 20190777.

    Google Scholar

    [17] H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 2000, 42(4), 599–653. doi: 10.1137/S0036144500371907

    CrossRef Google Scholar

    [18] H. W. Hethcote and P. van den Driessche, Some epidemiological models with nonlinear incidence, J. Math. Biol., 1991, 29(3), 271–287. doi: 10.1007/BF00160539

    CrossRef Google Scholar

    [19] G. Huang, Y. Takeuchi, W. B. Ma and D. J. Wei, Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate, Bull. Math. Biol., 2010, 72, 1192–1207. doi: 10.1007/s11538-009-9487-6

    CrossRef Google Scholar

    [20] Z. C. Jiang and Y. F. Guo, Hopf bifurcation and stability crossing curve in a planktonic resource-consumer system with double delays, Int. J. Bifurcat Chaos, 2020, 30(13), 2050190. doi: 10.1142/S0218127420501904

    CrossRef Google Scholar

    [21] Z. C. Jiang and W. B. Ma, Permanence of a delayed SIR epidemic model with general nonlinear incidence rate, Math. Meth. Appl. Sci., 2015, 38(3), 505–516. doi: 10.1002/mma.3083

    CrossRef Google Scholar

    [22] W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond., 1927, 115(772), 700–721.

    Google Scholar

    [23] A. Kumar and Nilam, Stability of a time delayed SIR epidemic model along with nonlinear incidence rate and Holling type-II treatment rate, Int. J. Comput. Methods., 2018, 15(06), 1850055. doi: 10.1142/S021987621850055X

    CrossRef Google Scholar

    [24] Y. N. Kyrychko and K. B. Blyuss, Global properties of a delayed SIR model with temporary immunity and nonlinear incidence rate, Nonlinear Anal. -Real World Appl., 2005, 6(3), 495–507. doi: 10.1016/j.nonrwa.2004.10.001

    CrossRef Google Scholar

    [25] S. Li, C. D. Huang and X. Y. Song, Detection of Hopf bifurcations induced by pregnancy and maturation delays in a spatial predator-prey model via crossing curves method, Chaos Solitons Fractals., 2023, 175, 114012. doi: 10.1016/j.chaos.2023.114012

    CrossRef Google Scholar

    [26] J. Liu, J. Chen and C. R. Tian, Stability of Turing bifurcation in a weighted networked reaction-diffusion system, Appl. Math. Lett., 2021, 118, 107135. doi: 10.1016/j.aml.2021.107135

    CrossRef Google Scholar

    [27] W. M. Liu, S. A. Levin and Y. Iwasa, Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, J. Math. Biol., 1986, 23, 187–204. doi: 10.1007/BF00276956

    CrossRef Google Scholar

    [28] Z. H. Liu and C. R. Tian, A weighted networked SIRS epidemic model, J. Differ. Equ., 2020, 269(12), 10995–11019. doi: 10.1016/j.jde.2020.07.038

    CrossRef Google Scholar

    [29] W. Lv, H. F. He and K. Z. Li, Robust optimal control of a network-based SIVS epidemic model with time delay, Chaos Solitons Fractals., 2022, 161, 112378. doi: 10.1016/j.chaos.2022.112378

    CrossRef Google Scholar

    [30] Y. Ma and Y. X. Dai, Stability and Hopf bifurcation analysis of a fractional-order ring-hub structure neural network with delays under parameters delay feedback control, Math. Biosci. Eng., 2023, 20(11), 20093–20115. doi: 10.3934/mbe.2023890

    CrossRef Google Scholar

    [31] C. R. Tian, Z. H. Liu and S. G. Ruan, Asymptotic and transient dynamics of SEIR epidemic models on weighted networks, Eue. J. Appl. Math., 2023, 34(2), 238–261. doi: 10.1017/S0956792522000109

    CrossRef Google Scholar

    [32] C. R. Tian, Q. Y. Zhang and L. Zhang, Global stability in a networked SIR epidemic model, Appl. Math. Lett., 2020, 107, 106444. doi: 10.1016/j.aml.2020.106444

    CrossRef Google Scholar

    [33] D. H. Wang, Y. D. Liu, X. J. Gao, C. C. Wang and D. J. Fan, Dynamics of an HIV infection model with two time delays, Discrete Contin. Dyn. Syst. -Ser. B, 2023, 28(11), 5641–5661. doi: 10.3934/dcdsb.2023069

    CrossRef Google Scholar

    [34] H. J. Wang, Y. H. Xu, M. Li and M. B. Hu, Impact of population size on epidemic spreading in a bipartite metapopulation network with recurrent mobility, Int. J. Mod. Phys. C, 2024, 35(08), 1–13.

    Google Scholar

    [35] J. H. Wang and Q. H. Jiang, Analysis of an SIS epidemic model with treatment, Adv. Differ. Equ., 2014, 1–10.

    Google Scholar

    [36] W. D. Wang, Backward bifurcation of an epidemic model with treatment, Math. Biosci., 2006, 201(1–2), 58–71. doi: 10.1016/j.mbs.2005.12.022

    CrossRef Google Scholar

    [37] W. D. Wang and S. G. Ruan, Bifurcations in an epidemic model with constant removal rate of the infectives, J. Math. Anal. Appl., 2004, 291(2), 775–793. doi: 10.1016/j.jmaa.2003.11.043

    CrossRef Google Scholar

    [38] D. J. Watts and S. H. Strogatz, Collective dynamics of 'small-world' networks, Nature, 1998, 393(6684), 440–442. doi: 10.1038/30918

    CrossRef Google Scholar

    [39] R. Xu and Z. E. Ma, Stability of a delayed SIRS epidemic model with a nonlinear incidence rate, Chaos Solitons Fractals., 2009, 41(5), 2319–2325. doi: 10.1016/j.chaos.2008.09.007

    CrossRef Google Scholar

    [40] X. F. Xu and J. J. Wei, Bifurcation analysis of a spruce budworm model with diffusion and physiological structures, J. Differ. Equ., 2017, 262(10), 5206–5230. doi: 10.1016/j.jde.2017.01.023

    CrossRef Google Scholar

    [41] X. P. Yuan, Y. K. Xue and M. X. Liu, Analysis of an epidemic model with awareness programs by media on complex networks, Chaos Solitons Fractals., 2013, 48, 1–11. doi: 10.1016/j.chaos.2012.12.001

    CrossRef Google Scholar

Figures(15)

Article Metrics

Article views(332) PDF downloads(104) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint