2025 Volume 15 Issue 4
Article Contents

Qianqian Li, Fengde Chen, Lijuan Chen, Zhong Li. DYNAMICAL ANALYSIS OF A DISCRETE AMENSALISM SYSTEM WITH THE BEDDINGTON-DEANGELIS FUNCTIONAL RESPONSE AND FEAR EFFECT[J]. Journal of Applied Analysis & Computation, 2025, 15(4): 2089-2123. doi: 10.11948/20240399
Citation: Qianqian Li, Fengde Chen, Lijuan Chen, Zhong Li. DYNAMICAL ANALYSIS OF A DISCRETE AMENSALISM SYSTEM WITH THE BEDDINGTON-DEANGELIS FUNCTIONAL RESPONSE AND FEAR EFFECT[J]. Journal of Applied Analysis & Computation, 2025, 15(4): 2089-2123. doi: 10.11948/20240399

DYNAMICAL ANALYSIS OF A DISCRETE AMENSALISM SYSTEM WITH THE BEDDINGTON-DEANGELIS FUNCTIONAL RESPONSE AND FEAR EFFECT

  • This paper proposes a discrete amensalism with the Beddington-DeAngelis functional response response and fear effect on the first species. By comparison and study of different bifurcations, the introduction of the Beddington-DeAngelis functional response not only increased the dynamical behaviour of the system, including the emergence of pitchfork bifurcation and fold bifurcation, but also reduced the rate of extinction of the first species. Furthermore, we analyze the influence of the fear effect on the system, specifically focusing on the boundary equilibrium $E_2$ and the positive equilibrium $E_1^*$. Our findings reveal that when the second species is in a chaotic state, due to the persistence of the second species, the fear effect may have increased the stability of the first species or accelerated the extinction of the first species; when the second species is stable, the fear effect plays an essential part in maintaining the stability of the first species. Moreover, an appropriate fear effect promotes the coexistence of the first and second species. However, if the fear effect becomes excessively large, it directly results in the extinction of the first species. The discovery further enhances the understanding of the influence generated by amensalism through the fear effect.

    MSC: 34C23, 34D20, 34H10, 92D25
  • 加载中
  • [1] R. Banerjee, P. Das and D. Mukherjee, Effects of fear and anti-predator response in a discrete system with delay, Discrete Contin. Dyn. Syst. Ser. B, 2022, 27(7), 3643–3661. doi: 10.3934/dcdsb.2021200

    CrossRef Google Scholar

    [2] J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Anim. Ecol., 1975, 44, 331–340. doi: 10.2307/3866

    CrossRef Google Scholar

    [3] F. Chen, M. Zhang and R. Han, Existence of positive periodic solution of a discrete Lotka-Volterra amensalism model, J. Shengyang Univ. (Nat. Sci. ), 2015, 27(3), 251–254.

    Google Scholar

    [4] J. Chen, X. He and F. Chen, The influence of fear effect to a discrete-time predator-prey system with predator has other food resource, Mathematics, 2021, 9(8), 865. doi: 10.3390/math9080865

    CrossRef Google Scholar

    [5] S. Chen, F. Chen, V. Srivastava and R. D. Parshad, Dynamical analysis of an allelopathic phytoplankton model with fear effect, Qual. Theory Dyn. Syst., 2024, 23(4), 189. doi: 10.1007/s12346-024-01047-3

    CrossRef Google Scholar

    [6] J. Danane, M. Yavuz and M. Yıldız, Stochastic modeling of three-species prey-predator model driven by Lévy jump with mixed Holling-II and Beddington-DeAngelis functional responses, Fractal and Fractional, 2023, 7(10), 751. doi: 10.3390/fractalfract7100751

    CrossRef Google Scholar

    [7] D. L. DeAngelis, R. A. Goldstein and R. V. O'neill, A model for tropic interaction, Ecology, 1975, 56(4), 881–892. doi: 10.2307/1936298

    CrossRef Google Scholar

    [8] Q. Din, Dynamics and chaos control for a novel model incorporating plant quality index and larch budmoth interaction, Chaos Solitons Fractals, 2021, 153, 111595. doi: 10.1016/j.chaos.2021.111595

    CrossRef Google Scholar

    [9] Q. Din, K. Jameel and M. S. Shabbir, Discrete-time predator-prey system incorporating fear effect: Stability, bifurcation, and chaos control, Qual. Theory Dyn. Syst., 2024, 23(1), 1–43. doi: 10.1007/s12346-023-00858-0

    CrossRef Google Scholar

    [10] Q. Din and M. I. Khan, A discrete-time model for consumer-resource interaction with stability, bifurcation and chaos control, Qual. Theory Dyn. Syst., 2021, 20(2), 56. doi: 10.1007/s12346-021-00488-4

    CrossRef Google Scholar

    [11] Q. Din, R. A. Naseem and M. S. Shabbir, Predator-prey interaction with fear effects: Stability, bifurcation and two-parameter analysis incorporating complex and fractal behavior, Fractal and Fractional, 2024, 8(4), 221. doi: 10.3390/fractalfract8040221

    CrossRef Google Scholar

    [12] Q. Din and M. A. Zulfiqar, Qualitative behavior of a discrete predator-prey system under fear effects, Zeitschrift für Naturforschung A, 2022, 77(11), 1023–1043. doi: 10.1515/zna-2022-0129

    CrossRef Google Scholar

    [13] Y. Dong, D. Wu and C. Shen, Influence of fear effect and predator-taxis sensitivity on dynamical behavior of a predator-prey model, Z. Angew. Math. Phys., 2022, 73(1), 25. doi: 10.1007/s00033-021-01659-8

    CrossRef Google Scholar

    [14] K. H. Elliott, G. S. Betini and D. R. Norris, Experimental evidence for within-and cross-seasona effects of fear on survival and reproduction, J. Anim. Ecol., 2016, 85(2), 507–515. doi: 10.1111/1365-2656.12487

    CrossRef Google Scholar

    [15] C. C. García and J. V. Cuenca, Additive Allee effect on prey in the dynamics of a Gause predator-prey model with constant or proportional refuge on prey at low or high densities, Commun. Nonlinear Sci. Numer. Simul., 2023, 126, 107427. doi: 10.1016/j.cnsns.2023.107427

    CrossRef Google Scholar

    [16] C. García, M. Rendueles and M. Díaz, Microbial amensalism in Lactobacillus casei and Pseudomonas taetrolens mixed culture, Bioprocess. Biosyst. Eng., 2017, 40, 1111–1122. doi: 10.1007/s00449-017-1773-3

    CrossRef Google Scholar

    [17] J. M. Gómez and A. González-Megías, Asymmetrical interactions between ungulates and phytophagous insects: Being different matters, Ecology, 2002, 83(1), 203–211. doi: 10.1890/0012-9658(2002)083[0203:AIBUAP]2.0.CO;2

    CrossRef Google Scholar

    [18] X. Guan and F. Chen, Dynamical analysis of a two species amensalism model with Beddington-DeAngelis functional response and Allee effect on the second species, Nonlinear Anal. Real World Appl., 2019, 48, 71–93. doi: 10.1016/j.nonrwa.2019.01.002

    CrossRef Google Scholar

    [19] X. Guan and H. Deng, The qualitative analysis of a two species amesnalism model with non-monotonic functional response and Allee effect on second species, Ann. of Appl. Math., 2019, 35(2), 126–138.

    Google Scholar

    [20] W. Ishaque, Q. Din, K. A. Khan, et al., Dynamics of predator-prey model based on fear effect with bifurcation analysis and chaos control, Qual. Theory Dyn. Syst., 2024, 23(1), 26. doi: 10.1007/s12346-023-00878-w

    CrossRef Google Scholar

    [21] H. Jiang and T. D. Rogers, The discrete dynamics of symmetric competition in the plane, J. Math. Biol., 1978, 25(6), 573–596.

    Google Scholar

    [22] K. Kundu, S. Pal, S. Samanta, et al., Impact of fear effect in a discrete-time predator-prey system, Bull. Calcutta Math. Soc., 2018, 110, 245–264.

    Google Scholar

    [23] C. Lei, Dynamic behaviors of a stage structure amensalism system with a cover for the first species, Adv. Differ. Equations, 2018, 2018, 1–23. doi: 10.1186/s13662-017-1452-3

    CrossRef Google Scholar

    [24] L. Li, Z. Hou and Y. Mao, Dynamical transition and bifurcation of a diffusive predator-prey model with an Allee effect on prey, Commun. Nonlinear Sci. Numer. Simul., 2023, 126, 107433. doi: 10.1016/j.cnsns.2023.107433

    CrossRef Google Scholar

    [25] Q. Li, A. J. Kashyap, Q. Zhu, et al., Dynamical behaviours of discrete amensalism system with fear effects on first species, Math. Biosci. Eng., 2022, 21(1), 832–860.

    Google Scholar

    [26] Q. Lin and X. Zhou, On the existence of positive periodic solution of an amensalism model with Holling Ⅱ functional response, Math. Biol. Neurosci., 2017, 2017, Article ID 3.

    Google Scholar

    [27] H. Liu, H. Yu, C. Dai, et al., Dynamical analysis of an aquatic amensalism model with non-selective harvesting and Allee effect, Math. Biosci. Eng., 2021, 18(6), 8857–8882. doi: 10.3934/mbe.2021437

    CrossRef Google Scholar

    [28] J. Liu, B. Liu, P. Lv and T. Zhang, An eco-epidemiological model with fear effect and hunting cooperation, Chaos Solitons Fractals, 2021, 142, 110494. doi: 10.1016/j.chaos.2020.110494

    CrossRef Google Scholar

    [29] Y. Liu, L. Zhao and X. Huang, Stability and bifurcation analysis of two species amensalism model with Michaelis-Menten type harvesting and a cover for the first species, Adv. Differ. Equations, 2018, 2018, 1–19. doi: 10.1186/s13662-017-1452-3

    CrossRef Google Scholar

    [30] D. Luo and Q. Wang, Global dynamics of a Beddington-DeAngelis amensalism system with weak Allee effect on the first species, Appl. Math. Comput., 2021, 408, 126368.

    Google Scholar

    [31] D. Luo and Q. Wang, Global dynamics of a Holling-II amensalism system with nonlinear growth rate and Allee effect on the first species, Int. J. Bifurcation Chaos, 2021, 31(03), 2150050. doi: 10.1142/S0218127421500504

    CrossRef Google Scholar

    [32] X. Luo, G. Chen, B. Wang and J. Fang, Hybrid control of period-doubling bifurcation and chaos in discrete nonlinear dynamical systems, Chaos Solitons Fractals, 2003, 18, 775–783. doi: 10.1016/S0960-0779(03)00028-6

    CrossRef Google Scholar

    [33] J. C. Maerz, N. L. Panebianco and D. M. Madison, Effects of predator chemical cues and behavioral biorhythms on foraging, activity of terrestrial salamanders, J. Chem. Ecol., 2001, 27(7), 1333–1344. doi: 10.1023/A:1010309108210

    CrossRef Google Scholar

    [34] B. T. Mulugeta, L. Yu and Q. Yuan, Bifurcation analysis of a predator-prey model with strong Allee effect and Beddington-DeAngelis functional response, Discrete Contin. Dyn. Syst. Ser. B, 2023, 28(3), 1938–1963. doi: 10.3934/dcdsb.2022153

    CrossRef Google Scholar

    [35] D. L. Ogada, M. E. Gadd and R. S. Ostfeld, Impacts of large herbivorous mammals on bird diversity and abundance in an African savanna, Oecologia. 2008, 156, 387–397. doi: 10.1007/s00442-008-0994-1

    CrossRef Google Scholar

    [36] K. Sarkar and S. Khajanchi, Impact of fear effect on the growth of prey in a predator-prey interaction model, Ecol. Complexity, 2020, 42, 100826. doi: 10.1016/j.ecocom.2020.100826

    CrossRef Google Scholar

    [37] G. T. Skalski and J. F. Gilliam, Functional responses with predator interference: Viable alternatives to the Holling type II model, Ecology, 2001, 82(11), 3083–3092. doi: 10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2

    CrossRef Google Scholar

    [38] G. Sun, Qualitative analysis on two populations amensalism model, J. Jiamusi Univ. (Nat. Sci. Ed. ), 2003, 21(3), 283–286.

    Google Scholar

    [39] M. S. Surendar, M. Sambath and K. Balachandran, Qualitative analysis of a prey-predator model with prey refuge and intraspecific competition among predators, Boundary Value Probl., 2023, 2023(1), 81. doi: 10.1186/s13661-023-01771-w

    CrossRef Google Scholar

    [40] X. Wang, L. Zanette and X. Zou, Modelling the fear effect in predator-prey interactions, J. Math. Biol., 2016, 73(5), 1179–1204. doi: 10.1007/s00285-016-0989-1

    CrossRef Google Scholar

    [41] Z. Wei, Y. Xia and T. Zhang, Stability and bifurcation analysis of an amensalism model with weak Allee effect, Qual. Theory Dyn. Syst., 2020, 19, 1–15. doi: 10.1007/s12346-019-00337-5

    CrossRef Google Scholar

    [42] R. Wu, A two species amensalism model with non-monotonic functional response, Commun. Math. Biol. Neurosci., 2016, 2016, Article ID 19.

    Google Scholar

    [43] R. Wu, L. Zhao and Q. Lin, Stability analysis of a two species amensalism model with Holling II functional response and a cover for the first species, J. Nonlinear Funct. Anal., 2016, 2016, 46.

    Google Scholar

    [44] X. Xi, J. N. Griffin and S. Sun, Grasshoppers amensalistically suppress caterpillar performance and enhance plant biomass in an alpine meadow, Oikos, 2013, 122(7), 1049–1057. doi: 10.1111/j.1600-0706.2012.00126.x

    CrossRef Google Scholar

    [45] X. Xie, F. Chen and M. He, Dynamic behaviors of two species amensalism model with a cover for the first species, J. Math. Comput. Sci., 2016, 16(2), 395–401.

    Google Scholar

    [46] P. Xue and C. Ren, Spatial patterns for a predator-prey system with Beddington-DeAngelis functional response and fractional cross-diffusion, AIMS Math., 2023, 8(8), 19413–19426. doi: 10.3934/math.2023990

    CrossRef Google Scholar

    [47] L. Y. Zanette, A. F. White and M. C. Allen, Perceived predation risk reduces the number of offspring songbirds produce per yea, Science, 2011, 334, 1398–1401. doi: 10.1126/science.1210908

    CrossRef Google Scholar

    [48] M. Zhao and Y. Du, Stability and bifurcation analysis of an amensalism system with Allee effect, Adv. Differ. Equations, 2020, 2020, 1–13. doi: 10.1186/s13662-019-2438-0

    CrossRef Google Scholar

    [49] Q. Zhou and F. Chen, Dynamical analysis of a discrete amensalism system with the Beddington-DeAngelis functional response and Allee effect for the unaffected species, Qual. Theory Dyn. Syst., 2023, 22(1), 16. doi: 10.1007/s12346-022-00716-5

    CrossRef Google Scholar

    [50] Q. Zhou, F. Chen and S. Lin, Complex dynamics analysis of a discrete amensalism system with a cover for the first species, Axioms, 2022, 11(8), 365. doi: 10.3390/axioms11080365

    CrossRef Google Scholar

    [51] Q. Zhu, F. Chen, Z. Li and L. Chen, Global dynamics of two-species amensalism model with Beddington-DeAngelis functional response and fear effect, Int. J. Bifurcation Chaos, 2024, 34(06), 2450075. doi: 10.1142/S0218127424500755

    CrossRef Google Scholar

Figures(10)  /  Tables(2)

Article Metrics

Article views(249) PDF downloads(66) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint