2025 Volume 15 Issue 4
Article Contents

Mo Faheem, Arshad Khan, Fathalla Ali Rihan. A WAVELET COLLOCATION METHOD FOR NEUTRAL DELAY DIFFERENTIAL EQUATIONS ON METRIC STAR GRAPH[J]. Journal of Applied Analysis & Computation, 2025, 15(4): 2124-2151. doi: 10.11948/20240402
Citation: Mo Faheem, Arshad Khan, Fathalla Ali Rihan. A WAVELET COLLOCATION METHOD FOR NEUTRAL DELAY DIFFERENTIAL EQUATIONS ON METRIC STAR GRAPH[J]. Journal of Applied Analysis & Computation, 2025, 15(4): 2124-2151. doi: 10.11948/20240402

A WAVELET COLLOCATION METHOD FOR NEUTRAL DELAY DIFFERENTIAL EQUATIONS ON METRIC STAR GRAPH

  • This paper proposes a Haar wavelet collocation approach to solve neutral delay differential equations on a metric star graph (NDDE-MSG) with $\kappa$ edges. The application of Haar wavelet, together with its integration on NDDE-MSG, yields a system of equations, which on solving gives unknown wavelet coefficients and subsequently the solution. The upper bound of the global error norm is established to demonstrate that the proposed method converges exponentially. We conduct some numerical experiments to test the computational convergence of our approach. In this study, the authors explore the numerical solution for NDDE on metric star graphs for the first time.

    MSC: 65T60, 65N35, 65N15
  • 加载中
  • [1] J.-P. Antoine, R. Murenzi, P. Vandergheynst and S. T. Ali, Two-Dimensional Wavelets and their Relatives, Cambridge University Press, 2008.

    Google Scholar

    [2] H. Azin, M. Heydari, O. Baghani and F. Mohammadi, Fractional Vieta-Fibonacci wavelets: Application for systems of fractional delay differential equations, Physica Scripta, 2023, 98(9), 095242. doi: 10.1088/1402-4896/aceec0

    CrossRef Google Scholar

    [3] T. Dumrongpokaphan, Y. Lenbury, R. Ouncharoen and Y. Xu, An intracellular delay-differential equation model of the HIV infection and immune control, Math. Modell. Natural Phenom., 2007, 2(1), 84–112. doi: 10.1051/mmnp:2008012

    CrossRef Google Scholar

    [4] A. Abou-El-Ela, A. Sadek and A. Mahmoud, Existence and uniqueness of a periodic solution for third-order delay differential equation with two deviating arguments, IAENG Int. J. Appl. Math., 2012, 42(1), 7–12.

    Google Scholar

    [5] M. Faheem and A. Khan, A collocation method for time-fractional diffusion equation on a metric star graph with $\eta$ edges, Math. Meth. Appl. Sci., 2023, 46(8), 8895–8914. doi: 10.1002/mma.9023

    CrossRef $\eta$ edges" target="_blank">Google Scholar

    [6] M. Faheem, A. Khan and Ö. Oruç, A generalized Gegenbauer wavelet collocation method for solving p-type fractional neutral delay differential and delay partial differential equations, Math. Sci., 2024, 18, 137–166. doi: 10.1007/s40096-022-00490-0

    CrossRef Google Scholar

    [7] M. Faheem, A. Raza and A. Khan, Collocation methods based on Gegenbauer and Bernoulli wavelets for solving neutral delay differential equations, Math. Comput. Simul., 2020, 180, 72–92.

    Google Scholar

    [8] U. Ghosh, S. Chowdhury and D. K. Khan, Mathematical modelling of epidemiology in presence of vaccination and delay, Comput. Sci. Infor. Tech. (CS and IT), 2013, 91–98.

    Google Scholar

    [9] K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, 74, Springer Science & Business Media Dordrecht, 2013.

    Google Scholar

    [10] J. R. Graef, M. K. Grammatikopoulos and P. W. Spikes, On the asymptotic behavior of solutions of a second order nonlinear neutral delay differential equation, Jour. Math. Anal. Appl., 1991, 156(1), 23–39. doi: 10.1016/0022-247X(91)90379-E

    CrossRef Google Scholar

    [11] M. H. Heydari and O. Bavi, An efficient wavelet method for nonlinear problems arising in heat transfer, Eng. Comput., 2022, 38(4), 2867–2878.

    Google Scholar

    [12] M. H. Heydari and M. Razzaghi, A hybrid method based on the Chebyshev cardinal functions/wavelets for time fractional coupled Klein–Gordon–Schrödinger equations, Jour. Comput. Appl. Math., 2023, 427, 115142. doi: 10.1016/j.cam.2023.115142

    CrossRef Google Scholar

    [13] M. H. Heydari and M. Razzaghi, A new wavelet method for fractional integro-differential equations with $\psi$-Caputo fractional derivative, Math. Comput. Simul., 2024, 217, 97–108. doi: 10.1016/j.matcom.2023.10.023

    CrossRef $\psi$-Caputo fractional derivative" target="_blank">Google Scholar

    [14] M. H. Heydari, M. Razzaghi and C. Cattani, Fractional Chebyshev cardinal wavelets: Application for fractional quadratic integro-differential equations, Inter. Jour. Comput. Math., 2023, 100(3), 479–496. doi: 10.1080/00207160.2022.2122052

    CrossRef Google Scholar

    [15] A. Hussain and T. Kanwal, Existence and uniqueness for a neutral differential problem with unbounded delay via fixed point results, Trans. A. Razmadze Math. Inst., 2018, 172(3), 481–490. doi: 10.1016/j.trmi.2018.08.006

    CrossRef Google Scholar

    [16] T. Insperger, On the approximation of delayed systems by Taylor series expansion, Jour. Comput. Nonlinear Dyn., 2015, 10(2), 024503. doi: 10.1115/1.4027180

    CrossRef Google Scholar

    [17] Z. Jackiewicz, Existence and uniqueness of solutions of neutral delay-differential equations with state dependent delays, Funkcial. Ekvac, 1987, 30(1), 9–17.

    Google Scholar

    [18] G. Kron, Electric circuit models of the Schrödinger equation, Phys. Rev., 1945, 67(1–2), 39. doi: 10.1103/PhysRev.67.39

    CrossRef Google Scholar

    [19] J. E. Lagnese and G. Leugering, Domain in Decomposition Methods in Optimal Control of Partial Differential Equations, 148, Springer Science & Business Media, 2004.

    Google Scholar

    [20] G. Leugering, Dynamic domain decomposition of optimal control problems for networks of strings and Timoshenko beams, SIAM J. Contr. Optim., 1999, 37(6), 1649–1675. doi: 10.1137/S0363012997331986

    CrossRef Google Scholar

    [21] M. Mehra, A. Shukla and G. Leugering, An adaptive spectral graph wavelet method for PDEs on networks, Adv. Comput. Math., 2021, 47(1), 1–29. doi: 10.1007/s10444-020-09827-6

    CrossRef Google Scholar

    [22] D. Mugnolo, Semigroup Methods for Evolution Equations on Networks, 20, Springer, 2014.

    Google Scholar

    [23] Ö. Oruç, Integrated Chebyshev wavelets for numerical solution of nonlinear one-dimensional and two-dimensional Rosenau equations, Wave Motion, 2023, 118, 103107. doi: 10.1016/j.wavemoti.2022.103107

    CrossRef Google Scholar

    [24] P. Rahimkhani, Y. Ordokhani and S. Sabermahani, Bernoulli wavelet least squares support vector regression: Robust numerical method for systems of fractional differential equations, Math. Meth. Appl. Sci., 2023, 46(17), 17641–17659. doi: 10.1002/mma.9522

    CrossRef Google Scholar

    [25] A. Raza, A. Khan, P. Sharma and K. Ahmad, Solution of singularly perturbed differential difference equations and convection delayed dominated diffusion equations using Haar wavelet, Math. Sci., 2021, 15(2), 123–136. doi: 10.1007/s40096-020-00355-4

    CrossRef Google Scholar

    [26] F. A. Rihan, Delay Differential Equations and Applications to Biology, Springer (SP), 2021. https://doi.org/10.1007/978-981-16-0626-7. doi: 10.1007/978-981-16-0626-7

    CrossRef Google Scholar

    [27] K. Ruedenberg and C. W. Scherr, Free-electron network model for conjugated systems, I. Theory, The Jour. Chem. Phy., 1953, 21(9), 1565–1581. doi: 10.1063/1.1699299

    CrossRef Google Scholar

    [28] S. Sabermahani, Y. Ordokhani and P. Rahimkhani, Application of generalized Lucas wavelet method for solving nonlinear fractal-fractional optimal control problems, Chaos, Solitons & Fractals, 2023, 170, 113348.

    Google Scholar

    [29] S. Sabermahani, Y. Ordokhani and M. Razzaghi, Ritz-generalized Pell wavelet method: Application for two classes of fractional pantograph problems, Commun. Nonlinear Sci. Numer. Simul., 2023, 119, 107138. doi: 10.1016/j.cnsns.2023.107138

    CrossRef Google Scholar

    [30] A. Shukla, M. Mehra and G. Leugering, A fast adaptive spectral graph wavelet method for the viscous Burgers' equation on a star-shaped connected graph, Math. Meth. Appl. Sci., 2020, 43(13), 7595–7614. doi: 10.1002/mma.5907

    CrossRef Google Scholar

    [31] M. C. Steinbach, On PDE solution in transient optimization of gas networks, Jour. Comput. Appl. Math., 2007, 203(2), 345–361. doi: 10.1016/j.cam.2006.04.018

    CrossRef Google Scholar

    [32] D. F. Walnut, An Introduction to Wavelet Analysis, Springer Science & Business Media, 2002.

    Google Scholar

    [33] H. Yoshioka, K. Unami and M. Fujihara, Burgers type equation models on connected graphs and their application to open channel hydraulics (mathematical aspects and applications of nonlinear wave phenomena), Kyuto Uni., 2014, 1890, 160–171.

    Google Scholar

Figures(8)  /  Tables(5)

Article Metrics

Article views(190) PDF downloads(64) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint