2025 Volume 15 Issue 5
Article Contents

Haoran Geng, Liang Wang, Daqing Jiang. THRESHOLD BEHAVIOR OF A STOCHASTIC SVI EPIDEMIC MODEL WITH JUMP NOISE AND SATURATED INCIDENCE RATE[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 3004-3024. doi: 10.11948/20240455
Citation: Haoran Geng, Liang Wang, Daqing Jiang. THRESHOLD BEHAVIOR OF A STOCHASTIC SVI EPIDEMIC MODEL WITH JUMP NOISE AND SATURATED INCIDENCE RATE[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 3004-3024. doi: 10.11948/20240455

THRESHOLD BEHAVIOR OF A STOCHASTIC SVI EPIDEMIC MODEL WITH JUMP NOISE AND SATURATED INCIDENCE RATE

  • Author Bio: Email: ntumacghr@hotmail.com (H. Geng); Email: daqingjiang2010@hotmail.com (D. Jiang)
  • Corresponding author: Email: ntumacwangl@hotmail.com (L. Wang) 
  • Fund Project: The authors were supported by National Natural Science Foundation of China (No. 12001271), Natural Science Foundation of Jiangsu Province (No. BK20200484) and Fundamental Research Funds for the Central Universities (No. 30922010813)
  • This paper analyzes a stochastic SVI epidemic model with jump noise and saturated incidence rate. By applying Kunita's inequality, we derive the asymptotic pathwise estimation of the stochastic solution. We then present the basic reproduction number of the model, $ \bar{R_0^{s}} $, which determines the extinction and persistence in the mean of the disease. Additionally, numerical simulations are conducted to verify the theoretical results. Consequently, both theoretical and numerical results indicate that the jump noise can hold off the spread of the disease.

    MSC: 34E10, 60G51, 60H10
  • 加载中
  • [1] D. Applebaum, Lévy Process and Stochastic Calculus, Cambridge Univ. Press, New York, 2009.

    Google Scholar

    [2] J. Bao, X. Mao, G. Yin and C. Yuan, Competitive Lotka–Volterra population dynamics with jumps, Nonlinear Anal. -Theor., 2011, 74(17), 6601–6616. doi: 10.1016/j.na.2011.06.043

    CrossRef Google Scholar

    [3] J. Bao and C. Yuan, Stochastic population dynamics driven by Lévy noise, J. Math. Anal. Appl., 2012, 391, 363–375. doi: 10.1016/j.jmaa.2012.02.043

    CrossRef Google Scholar

    [4] M. J. Beira and P. J. Sebastião, A differential equations model-fitting analysis of COVID-19 epidemiological data to explain multi-wave dynamics, Sci. Rep., 2021, 11, 16312. doi: 10.1038/s41598-021-95494-6

    CrossRef Google Scholar

    [5] B. Buonomo, G. Carbone and A. d'Onofrio, Effect of seasonality on the dynamics of an imitation-based vaccination model with public health intervention, Math. Biosci. Eng., 2018, 15, 299–321.

    Google Scholar

    [6] Z. Cao, W. Feng, X. Wen and L. Zu, Dynamical behavior of a stochastic SEI epidemic model with saturation incidence and logistic growth, Physica A, 2019, 523, 894–907. doi: 10.1016/j.physa.2019.04.228

    CrossRef Google Scholar

    [7] V. Capasso and G. Serio, A generalization of the Kermack-McKendrick deterministic epidemic model, Math. Biosci., 1978, 42, 43–61. doi: 10.1016/0025-5564(78)90006-8

    CrossRef Google Scholar

    [8] S. M. Imran, S. Asghar and M. Mushtaq, Mixed convection flow over an unsteady stretching surface in a porous medium with heat source, Math. Probl. Eng., 2012, 2012(1), 485418. doi: 10.1155/2012/485418

    CrossRef Google Scholar

    [9] H. Lee and A. Lao, Transmission dynamics and control strategies assessment of avian influenza A (H5N6) in the Philippines, Infect. Dis. Model., 2018, 3, 35–59.

    Google Scholar

    [10] D. Li, F. Wei and X. Mao, Stationary distribution and density function of a stochastic SVIR epidemic model, J. Franklin I., 2022, 359, 9422–9449. doi: 10.1016/j.jfranklin.2022.09.026

    CrossRef Google Scholar

    [11] G. B. Libotte, F. S. Lobato, G. M. Platt and A. J. S. Neto, Determination of an optimal control strategy for vaccine administration in COVID-19 pandemic treatment, Comput. Meth. Prog. Bio., 2020, 196, 105664. doi: 10.1016/j.cmpb.2020.105664

    CrossRef Google Scholar

    [12] R. S. Liptser, A strong law of large numbers for local martingales, Stochastics, 1980, 3, 217–228. doi: 10.1080/17442508008833146

    CrossRef Google Scholar

    [13] M. Liu and K. Wang, Dynamics of a two-prey one-predator system in random environments, J. Nonlinear Sci., 2013, 23, 751–775. doi: 10.1007/s00332-013-9167-4

    CrossRef Google Scholar

    [14] M. Liu and K. Wang, Dynamics of a Leslie–Gower Holling-type Ⅱ predator–prey system with Lévy jumps, Nonlinear Anal. -Theor., 2013, 85, 204–213. doi: 10.1016/j.na.2013.02.018

    CrossRef Google Scholar

    [15] Q. Liu, D. Jiang, T. Hayat and A. Alsaedi, Stationary distribution of a stochastic delayed SVEIR epidemic model with vaccination and saturation incidence, Physica A, 2018, 512, 849–863. doi: 10.1016/j.physa.2018.08.054

    CrossRef Google Scholar

    [16] D. Kiouach, Y. Sabbar and S. El Azami El‐idrissi, New results on the asymptotic behavior of an SIS epidemiological model with quarantine strategy, stochastic transmission, and Lévy disturbance, Math. Method. Appl. Sci., 2021, 44, 13468–13492. doi: 10.1002/mma.7638

    CrossRef Google Scholar

    [17] H. Kunita, Stochastic differential equations based on Lévy processes and stochastic flows of diffeomorphisms, Real and Stochastic Analysis: New Perspectives. Boston, MA: Birkhäuser Boston, 2004, 305–373.

    Google Scholar

    [18] X. Mao, Stochastic Differential Equations and Applications, Elsevier, 2007.

    Google Scholar

    [19] S. Peng and X. Zhu, Necessary and sufficient condition for comparison theorem of 1-dimensional stochastic differential equations, Stoch. Proc. Appl., 2006, 116, 370–380. doi: 10.1016/j.spa.2005.08.004

    CrossRef Google Scholar

    [20] N. Privault and L. Wang, Stochastic SIR Lévy jump model with heavy-tailed increments, J. Nonlinear Sci., 2021, 31, 1–28. doi: 10.1007/s00332-020-09667-0

    CrossRef Google Scholar

    [21] Z. Qiu, M. Y. Li and Z. Shen, Global dynamics of an infinite dimensional epidemic model with nonlocal state structures, J. Differ. Equations, 2018, 265, 5262–5296. doi: 10.1016/j.jde.2018.06.036

    CrossRef Google Scholar

    [22] X. Wang, K. Wang and Z. Teng, Global dynamics and density function in a class of stochastic SVI epidemic models with Lévy jumps and nonlinear incidence, AIMS Math., 2023, 8, 2829–2855. doi: 10.3934/math.2023148

    CrossRef Google Scholar

    [23] X. Yu and S. Yuan, Asymptotic properties of a stochastic chemostat model with two distributed delays and nonlinear perturbation, Discrete and Continuous Dynamical Systems - B, 2020, 25(7), 2373–2390. doi: 10.3934/dcdsb.2020014

    CrossRef Google Scholar

    [24] X. Zhang, D. Jiang, T. Hayat and B. Ahmad, Dynamical behavior of a stochastic SVIR epidemic model with vaccination, Physica A, 2017, 483, 94–108. doi: 10.1016/j.physa.2017.04.173

    CrossRef Google Scholar

    [25] Y. Zhao and D. Jiang, The threshold of a stochastic SIS epidemic model with vaccination, Appl. Math. Comput., 2014, 243, 718–727.

    Google Scholar

    [26] Y. Zhao and D. Jiang, The threshold of a stochastic SIS epidemic model with vaccination, Appl. Math. Comput., 2014, 243, 718–727.

    Google Scholar

    [27] B. Zhou, X. Zhang and D. Jiang, Dynamics and density function analysis of a stochastic SVI epidemic model with half saturated incidence rate, Chaos Soliton. Fract., 2020, 137, 109865. doi: 10.1016/j.chaos.2020.109865

    CrossRef Google Scholar

    [28] Y. Zhou and W. Zhang, Threshold of a stochastic SIR epidemic model with Lévy jumps, Physica A, 2016, 446, 204–216. doi: 10.1016/j.physa.2015.11.023

    CrossRef Google Scholar

    [29] Y. Zhu, L. Wang and Z. Qiu, Dynamics of a stochastic cholera epidemic model with Lévy process, Physica A, 2022, 595, 127069.

    Google Scholar

    [30] Y. Zhu, L. Wang and Z. Qiu, Threshold behaviour of a stochastic SIRS Lévy jump model with saturated incidence and vaccination, Math. Biosci. Eng., 2023, 20, 1402–1419.

    Google Scholar

Figures(2)  /  Tables(1)

Article Metrics

Article views(50) PDF downloads(31) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint