2025 Volume 15 Issue 5
Article Contents

Fuchen Zhang, Song Chen, Xiusu Chen, Fei Xu, Min Xiao. QUALITATIVE BEHAVIORS AND CONTROL OF A NEW FOUR-DIMENSIONAL LORENZ SYSTEM[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 3025-3044. doi: 10.11948/20240462
Citation: Fuchen Zhang, Song Chen, Xiusu Chen, Fei Xu, Min Xiao. QUALITATIVE BEHAVIORS AND CONTROL OF A NEW FOUR-DIMENSIONAL LORENZ SYSTEM[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 3025-3044. doi: 10.11948/20240462

QUALITATIVE BEHAVIORS AND CONTROL OF A NEW FOUR-DIMENSIONAL LORENZ SYSTEM

  • In this paper, a new nonlinear four-dimensional Lorenz system is proposed. Nonlinear dynamical properties of this system, including the stability of the fixed points, Lyapunov exponents, the bifurcation behaviors and sensitivity to initial conditions, are considered by using chaos theory and numerical simulations. It is very interesting that we find that this system exhibits chaos phenomena for a set of parameters. The globally exponential attractive set of this system has been obtained according to Lyapunov stability theory. Synchronization has been realized between two identical hyperchaotic systems via globally exponential approach and sliding mode control method by using the results of the global exponential attractive set, Vaidyanathan's theorem and Dini derivative. The novelty of the paper lies in that the globally exponential attractive set of the system is obtained firstly, then the result of the globally exponential attractive set is used to study chaos control and chaos synchronization. Furthermore, the precise mathematical expression of the controller is obtained according to the boundedness of this system. Finally, the synchronization process is simulated by MATLAB to illustrate the effectiveness of the theoretical analysis. The results of numerical simulations show that two control methods for chaos synchronization are effective.

    MSC: 34D06, 34H10, 26A33, 39A13
  • 加载中
  • [1] M. P. Asir, K. Thamilmaran, A. Prasad, U. Feudel, N. V. Kuznetsov and M. D. Shrimali, Hidden strange nonchaotic dynamics in a non-autonomous model, Chaos Soliton. Fract., 2023, 168, 113101. doi: 10.1016/j.chaos.2023.113101

    CrossRef Google Scholar

    [2] T. L. Carroll and L. M. Pecora, Synchronizing chaotic circuits, IEEE Trans. Circuits Syst., 1991, 38(4), 453–456. doi: 10.1109/31.75404

    CrossRef Google Scholar

    [3] G. Chen and T. Ueta, Yet another chaotic attractor, Int. J. Bifurc. Chaos Appl. Sci. Eng., 1999, 9, 1465–1466. doi: 10.1142/S0218127499001024

    CrossRef Google Scholar

    [4] L. Chua, M. Komuro and T. Matsumoto, The double scroll family, IEEE Trans. Circuits Syst., 1986, 33(11), 1072–1118. doi: 10.1109/TCS.1986.1085869

    CrossRef Google Scholar

    [5] P. Frederickson, J. Kaplan, E. Yorke and J. Yorke, The Lyapunov dimension of strange attractors, J. Differ. Equ., 1983, 49(2), 185–207. doi: 10.1016/0022-0396(83)90011-6

    CrossRef Google Scholar

    [6] H. Fujisaka and T. Yamada, Stability theory of synchronized motion in coupled-oscillator systems, Prog. Theor. Phys., 1983, 69(1), 32–47. doi: 10.1143/PTP.69.32

    CrossRef Google Scholar

    [7] W. W. Ho and S. Choi, Exact emergent quantum state designs from quantum chaotic dynamics, Phys. Rev. Lett., 2022, 128(6), 060601. doi: 10.1103/PhysRevLett.128.060601

    CrossRef Google Scholar

    [8] Y. Y. Huang, H. J. Huang, Y. C. Huang, Y. H. Wang, F. Yu and B. Yu, Drive-response asymptotic shape synchronization for a class of two-dimensional chaotic systems and its application in image encryption, Physica D., 2024, 463, 134162. doi: 10.1016/j.physd.2024.134162

    CrossRef Google Scholar

    [9] D. Khattar, N. Agrawal and G. Singh, Chaos synchronization of a new chaotic system having exponential term via adaptive and sliding mode control, Differ. Equ. Dyn. Syst., 2023, 1–19. https//doi. org/10.1007/s12591-023-00635-0. doi: 10.1007/s12591-023-00635-0

    CrossRef Google Scholar

    [10] J. S. Kim, D. H. Kim, J. H. Lee and J. S. Lee, Smooth pulse number transition strategy considering time delay in synchronized SVPWM, IEEE Trans. Power Electron., 2022, 38(2), 2252–2261.

    Google Scholar

    [11] N. Kuznetsov, T. Mokaev, O. Kuznetsova and E. V. Kudryashova, The Lorenz system: Hidden bounary of practical stability and the Lyapunov dimension, Nonlinear Dyn., 2020, 102, 713–732. doi: 10.1007/s11071-020-05856-4

    CrossRef Google Scholar

    [12] N. Kuznetsov, T. Mokaev, V. Ponomarenko, E. Seleznev, N. Stankevich and L. Chua, Hidden attractors in Chua circuit: Mathematical theory meets physical experiments, Nonlinear Dyn., 2023, 111(6), 5859–5887. doi: 10.1007/s11071-022-08078-y

    CrossRef Google Scholar

    [13] G. Laarem, A new 4-D hyper chaotic system generated from the 3-D Rosslor chaotic system, dynamical analysis, chaos stabilization via an optimized linear feedback control, it's fractional order model and chaos synchronization using optimized fractional order sliding mode control, Chaos Soliton. Fract., 2021, 152, 111437. doi: 10.1016/j.chaos.2021.111437

    CrossRef Google Scholar

    [14] G. A. Leonov and V. A. Boichenko, Lyapunov's direct method in the estimation of the Hausdorff dimension of attractors, Acta Appl. Math., 1992, 26(1), 1–60. doi: 10.1007/BF00046607

    CrossRef Google Scholar

    [15] T. Y. Li and J. A. Yorke, Period three implies chaos, Am. Math. Mon., 1975, 82, 985–992. doi: 10.1080/00029890.1975.11994008

    CrossRef Google Scholar

    [16] M. Liu, J. Liu, J. Liang, Y. Sun and Y. Shu, Observer-based secure synchronization control of directed complex-valued dynamical networks under link attacks, Nonlinear Dyn., 2024, 112, 12303–12318. doi: 10.1007/s11071-024-09695-5

    CrossRef Google Scholar

    [17] E. N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci., 1963, 20, 130–141. doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2

    CrossRef Google Scholar

    [18] J. Lu and G. Chen, A new chaotic attractor coined, Int. J. Bifurc. Chaos Appl. Sci. Eng., 2002, 12(3), 659–661. doi: 10.1142/S0218127402004620

    CrossRef Google Scholar

    [19] J. Lu, G. Chen, D. Cheng and S. Celikovsky, Bridge the gap between the Lorenz system and the Chen system, Int. J. Bifurcat. Chaos., 2002, 12(12), 2917–2926. doi: 10.1142/S021812740200631X

    CrossRef Google Scholar

    [20] G. M. Mahmoud, M. A. Al-Kashif and A. A. Farghaly, Chaotic and hyperchaotic attractors of a complex nonlinear system, J. Phys. A: Math. Theor., 2008, 41(5), 055104. doi: 10.1088/1751-8113/41/5/055104

    CrossRef Google Scholar

    [21] M. Mohadeszadeh and N. Pariz, An application of adaptive synchronization of uncertain chaotic system in secure communication systems, Int. J. Simul. Model., 2022, 42(1), 143–152. doi: 10.1080/02286203.2020.1848281

    CrossRef Google Scholar

    [22] E. Nijholt, T. Pereira, F. C. Queiroz and D. Turaev, Chaotic behavior in diffusively coupled systems, Communications in Mathematical Physics, 2023, 401(3), 2715–2756. doi: 10.1007/s00220-023-04699-5

    CrossRef Google Scholar

    [23] H. Nijmeijer, A dynamical control view on synchronization, Physica D., 2001, 154(3–4), 219–228. doi: 10.1016/S0167-2789(01)00251-2

    CrossRef Google Scholar

    [24] A. Y. Pogromsky, G. Santoboni and H. Nijmeijer, An ultimate bound on the trajectories of the Lorenz system and its applications, Nonlinearity, 2003, 16, 1597–1605. doi: 10.1088/0951-7715/16/5/303

    CrossRef Google Scholar

    [25] H. Poincar$\acute{e}$, Sur le probleme des trois corps et les equations de la dynamique, Acta Math., 1890, 13, 1–270.

    Google Scholar

    [26] M. G. Rosenblum, A. S. Pikovsky and J. Kurths, Phase synchronization in driven and coupled chaotic oscillators, IEEE Trans. Circuits Syst., 1997, 44(10), 874–881. doi: 10.1109/81.633876

    CrossRef Google Scholar

    [27] O. E. Rossler, An equation for continuous chaos, Phys. Lett. A, 1976, 57, 397–398. doi: 10.1016/0375-9601(76)90101-8

    CrossRef Google Scholar

    [28] S. C. Sinha, J. T. Henrichs and B. Ravindra, A general approach in the design of active controllers for nonlinear systems exhibiting chaos, Int. J. Bifurc. Chaos Appl. Sci. Eng., 2000, 10(1), 165–178. doi: 10.1142/S0218127400000104

    CrossRef Google Scholar

    [29] C. Sparrow, The Lorenz Equations: Bifurcations, Chaos and Strange Attractors, Applied Mathematical Science, vol. 41, Springer, New York, 1982.

    Google Scholar

    [30] L. Stenflo, Generalized Lorenz equations for acoustic-gravity waves in the atmosphere, Phys. Scr., 1996, 3, 83–84.

    Google Scholar

    [31] S. Vaidyanathan, Global chaos synchronization of identical Li-Wu chaotic systems via sliding mode control, Int. J. Model. Identif. Control, 2014, 22(2), 170–177. doi: 10.1504/IJMIC.2014.064295

    CrossRef Google Scholar

    [32] S. Vaidyanathan, S. Sampath and A. T. Azar, Global chaos synchronisation of identical chaotic systems via novel sliding mode control method and its application to Zhu system, Int. J. Model. Identif. Control, 2015, 23(1), 92–100. doi: 10.1504/IJMIC.2015.067495

    CrossRef Google Scholar

    [33] J. C. Vallejo and M. A. Sanjuan, Predictability of Chaotic Dynamics, A Finite-time Lyapunov Exponents Approach, Springer, Cham, 2019.

    Google Scholar

    [34] A. Wagemakers, A. Hartikainen, A. Daza, E Rasanen and M. A. Sanjuan, Chaotic dynamics creates and destroys branched flow, Phys. Rev. E, 2025, 111(1), 014214. doi: 10.1103/PhysRevE.111.014214

    CrossRef Google Scholar

    [35] A. Wolf, J. B. Swift, H. L. Swinney and J. A. Vastano, Determining Lyapunov exponents from a time series, Physica D., 1985, 16, 285–317. doi: 10.1016/0167-2789(85)90011-9

    CrossRef Google Scholar

    [36] F. C. Zhang, X. F. Liao, C. L. Mu, G. Y. Zhang and Y. Chen, On global boundedness of the Chen system, Discrete Contin. Dyn. Syst., Ser. B., 2017, 22(4), 1673–1681.

    Google Scholar

    [37] F. C. Zhang, X. F. Liao and G. Y. Zhang, Some new results for the generalized Lorenz system, Qual. Theory Dyn. Syst., 2017, 16(3), 749–759. doi: 10.1007/s12346-016-0206-z

    CrossRef Google Scholar

    [38] F. C. Zhang, X. F. Liao, G. Y. Zhang and C. L. Mu, Dynamical analysis of the generalized Lorenz systems, J. Dyn. Control Syst., 2017, 23(2), 349–362. doi: 10.1007/s10883-016-9325-8

    CrossRef Google Scholar

    [39] F. C. Zhang, C. L. Mu, S. M. Zhou and P. Zheng, New results of the ultimate bound on the trajectories of the family of the Lorenz systems, Discrete Contin. Dyn. Syst., Ser. B, 2015, 20(4), 1261–1276. doi: 10.3934/dcdsb.2015.20.1261

    CrossRef Google Scholar

    [40] F. C. Zhang and F. Xu, Dynamical behavior of the generzlized complex Lorenz chaotic system, J. Appl. Anal. Comp., 2024, 14(4), 1915–1931.

    Google Scholar

    [41] F. C. Zhang, F. Xu and X. Zhang, Qualitative behaviors of a four-dimensional Lorenz system, J. Phys. A: Math. Theor., 2024, 57(9), 095201.

    Google Scholar

    [42] F. C. Zhang and G. Y. Zhang, Further results on ultimate bound on the trajectories of the Lorenz system, Qual. Theory Dyn. Syst., 2016, 15(1), 221–235.

    Google Scholar

    [43] F. C. Zhang, P. Zhou and F. Xu, Qualitative properties of a physically extended six-dimensional Lorenz system, Int. J. Bifurc. Chaos Appl. Sci. Eng., 2024, 34(7), 2450083.

    Google Scholar

    [44] X. Zhao, J. Liu, G. Chen, L. Chai and D. Wang, Dynamics and synchronization of complex-valued ring networks, Int. J. Bifurc. Chaos Appl. Sci. Eng., 2022, 32(5), 2230011.

    Google Scholar

    [45] S. Zhou, Y. C. Lai and W. Lin, Stochastically adaptive control and synchronization: From globally one-sided Lipschitzian to only locally Lipschitzian systems, SIAM J. Appl. Dyn. Syst., 2022, 21(2), 932–959.

    Google Scholar

Figures(10)

Article Metrics

Article views(46) PDF downloads(37) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint