2025 Volume 15 Issue 5
Article Contents

Xiaoxiao Zheng, Xiaolin Si, Yanxiao Lu. NEW TRAVELING WAVE SOLUTIONS OF THE (3+1)-DIMENSIONAL GENERALIZED BREAKING SOLITON EQUATION[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 3045-3066. doi: 10.11948/20240520
Citation: Xiaoxiao Zheng, Xiaolin Si, Yanxiao Lu. NEW TRAVELING WAVE SOLUTIONS OF THE (3+1)-DIMENSIONAL GENERALIZED BREAKING SOLITON EQUATION[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 3045-3066. doi: 10.11948/20240520

NEW TRAVELING WAVE SOLUTIONS OF THE (3+1)-DIMENSIONAL GENERALIZED BREAKING SOLITON EQUATION

  • In this paper, we will study solutions of the (3+1)-dimensional generalized breaking soliton (gBS) equation which used to describe the interaction phenomena between Riemann wave and long wave via three space variables in nonlinear media. Firstly, we transform (3+1)-dimensional gBS equation to the bilinear form. Secondly, we apply the three-wave method to study bilinear form and then get many kinds of solutions for (3+1)-dimensional gBS equation, concluding periodic solitary wave solutions, bell solitary wave solutions, two-soliton solutions, breather lump wave solutions, et al. These solutions can describe interaction between waves and are presented by 3D and 2D graphs. Finally, we analyze the resolving thoughts of extended homoclinic test method and its correlation of three-wave method. Our results show the significance and efficiency of these methods.

    MSC: 34C25, 35C09, 35G20, 68W30
  • 加载中
  • [1] Abdullah, A. R. Seadawy and J. Wang, Mathematical methods and solitary wave solutions of three-dimensional zakharov-kuznetsov-burgers equation in dusty plasma and its applications, Results Phys., 2017, 7, 4269–4277. doi: 10.1016/j.rinp.2017.10.045

    CrossRef Google Scholar

    [2] T. Assiotis, Exact solution of interacting particle systems related to random matrices, Commun. Math. Phys., 2023, 402(3), 2641–2690. doi: 10.1007/s00220-023-04777-8

    CrossRef Google Scholar

    [3] R. D. Chen, Y. T. Gao, T. T. Jia, et al., Periodic-wave solutions and asymptotic properties for a (3+1)-dimensional generalized breaking soliton equation in fluids and plasmas, Modern Phys. Lett. B, 2021, 35(20), 2150344. doi: 10.1142/S0217984921503449

    CrossRef Google Scholar

    [4] Y. Chen, X. Lü and X. L. Wang, B$\ddot{a}$cklund transformation, wronskian solutions and interaction solutions to the (3+1)-dimensional generalized breaking soliton equation, Eur. Phys. J. Plus., 2023, 138(6), 492. doi: 10.1140/epjp/s13360-023-04063-5

    CrossRef Google Scholar

    [5] R. Cherniha and V. Davydovych, Symmetries and exact solutions of the diffusive holling-tanner prey-predator model, Acta Appl. Math., 2023, 187(1), 8. doi: 10.1007/s10440-023-00600-7

    CrossRef Google Scholar

    [6] J. Y. Cui, D. L. Li and T. F. Zhang, Symmetry reduction and exact solutions of the (3+1)-dimensional nKdV-nCBS equation, Appl. Math. Lett., 2023, 144, 108718. doi: 10.1016/j.aml.2023.108718

    CrossRef Google Scholar

    [7] M. T. Darvishi and M. Najafi, A modification of extended homoclinic test approach to solve the (3+1)-dimensional potential-ytsf equation, Chinese Phys. Lett., 2011, 28(4), 040202. doi: 10.1088/0256-307X/28/4/040202

    CrossRef Google Scholar

    [8] L. T. Gai, W. X. Ma and M. C. Li, Lump-type solutions, rogue wave type solutions and periodic lump-stripe interaction phenomena to a (3+1)-dimensional generalized breaking soliton equation, Phys. Lett. A, 2020, 384, 126178. doi: 10.1016/j.physleta.2019.126178

    CrossRef Google Scholar

    [9] L. T. Gai, W. Y. Wu, T. F. Ding, et al., Lump wave solutions, lump-stripe soliton inelastic collision phenomena and rogue-type wave solutions for a generalized breaking soliton system in (3+1)-dimensions, Wave Motion, 2024, 124, 103243. doi: 10.1016/j.wavemoti.2023.103243

    CrossRef Google Scholar

    [10] K. Hosseini, E. Hincal, F. Alizadeh, et al., Bifurcation analysis, sensitivity analysis, and Jacobi elliptic function structures to a generalized nonlinear Schrödinger equation, Int. J. Theor. Phys., 2024, 63, 306. doi: 10.1007/s10773-024-05829-y

    CrossRef Google Scholar

    [11] L. Hu, Y. T. Gao, T. T. Jia, et al., Bilinear forms, N-soliton solutions, breathers and lumps for a (2+1)-dimensional generalized breaking soliton system, Modern Phys. Lett. B, 2022, 36(15), 2250033. doi: 10.1142/S0217984922500336

    CrossRef Google Scholar

    [12] X. R. Hu, S. N. Lin and L. Wang, Integrability, multiple-cosh, lumps and lump-soliton solutions to a (2+1)-dimensional generalized breaking soliton equation, Commun. Nonlinear Sci. Numer. Simulat., 2020, 91, 105447. doi: 10.1016/j.cnsns.2020.105447

    CrossRef Google Scholar

    [13] M. Iqbal, A. R. Seadawy and S. Althobaiti, Mixed soliton solutions for the (2+1)-dimensional generalized breaking soliton system via new analytical mathematical method, Results Phys., 2022, 32, 105030. doi: 10.1016/j.rinp.2021.105030

    CrossRef Google Scholar

    [14] W. F. Li, Y. C. Kuang, J. Manafian, et al., Multiple rogue wave, double-periodic soliton and breather wave solutions for a generalized breaking soliton system in (3+1)-dimensions, Sci. Rep., 2024, 14, 19723. doi: 10.1038/s41598-024-70523-2

    CrossRef Google Scholar

    [15] J. G. Liu, A. M. Wazwaz, R. F. Zhang, et al., Breather-wave, multi-wave and interaction solutions for the (3+1)-dimensional generalized breaking solution equation, J. Appl. Anal. Comput., 2022, 12(6), 2426–2440.

    Google Scholar

    [16] W. X. Ma, Lump solutions to the Kadomtsev-Petviashvili equation, Phys. Lett. A, 2015, 379(36), 1975–1978. doi: 10.1016/j.physleta.2015.06.061

    CrossRef Google Scholar

    [17] W. X. Ma, Lump waves and their dynamics of a spatial symmetric generalized KP model, Rom. Rep. Phys., 2024, 76(3), 108.

    Google Scholar

    [18] W. X. Ma, Soliton solutions to Sasa-Satsuma-Type modified Korteweg-De Vries equations by binary Darboux transformations, Mathematics, 2024, 12(23), 3643. doi: 10.3390/math12233643

    CrossRef Google Scholar

    [19] M. Niwas, S. Kumar and H. Kharbanda, Symmetry analysis, closed-form invariant solutions and dynamical wave structures of the generalized (3+1)-dimensional breaking soliton equation using optimal system of lie subalgebra, J. Ocean. Eng. Sci, 2022, 7(2), 188–201. doi: 10.1016/j.joes.2021.08.002

    CrossRef Google Scholar

    [20] R. Pouyanmehr, K. Hosseini, R. Ansari, et al., Different wave structures to the (2+1)-dimensional generalized bogoyavlensky-konopelchenko equation, Int. J. Appl. Comput. Math., 2019, 5, 149. doi: 10.1007/s40819-019-0730-z

    CrossRef Google Scholar

    [21] H. U. Rehman, R. Akber, A. M. Wazwaz, et al., Analysis of Brownian motion in stochastic Schrödinger wave equation using Sardar sub-equation method, Optik, 2023, 289, 171305. doi: 10.1016/j.ijleo.2023.171305

    CrossRef Google Scholar

    [22] M. M. Roshid, M. Uddin, S. Boulaaras, et al., Dynamic optical soliton solutions of M-fractional modify unstable nonlinear Schrödinger equation via two analytic methods, Results Eng., 2025, 25, 103757. doi: 10.1016/j.rineng.2024.103757

    CrossRef Google Scholar

    [23] Y. D. Shang, Abundant explicit non-traveling wave solutions for the (2+1)-dimensional breaking soliton equation, Appl. Math. Lett., 2022, 131, 108029. doi: 10.1016/j.aml.2022.108029

    CrossRef Google Scholar

    [24] A. Silem and J. Lin, Exact solutions for a variable-coefficients nonisospectral nonlinear schrödinger equation via wronskian technique, Appl. Math. Lett., 2023, 135, 108397. doi: 10.1016/j.aml.2022.108397

    CrossRef Google Scholar

    [25] C. J. Wang, Z. D. Dai and L. Liang, Exact three-wave solution for higher dimensional KdV-type equation, Appl. Math. Comput., 2010, 216(2), 501–505.

    Google Scholar

    [26] A. M. Wazwaz. A new integrable (2+1)-dimensional generalized breaking soliton equation: N-soliton solutions and traveling wave solutions, Commun. Theor. Phys., 2016, 66, 385–388. doi: 10.1088/0253-6102/66/4/385

    CrossRef Google Scholar

    [27] G. Q. Xu, Integrability of a (2+1)-dimensional generalized breaking soliton equation, Appl. Math. Lett., 2015, 50, 16–22. doi: 10.1016/j.aml.2015.05.015

    CrossRef Google Scholar

    [28] X. W. Yan, S. F. Tian, M. J. Dong, et al., Characteristics of solitary wave, homoclinic breather wave and rogue wave solutions in a (2+1)-dimensional generalized breaking soliton equation, Comput. Math. Appl., 2018, 76(1), 179–186. doi: 10.1016/j.camwa.2018.04.013

    CrossRef Google Scholar

    [29] S. Yasin, A. Khan, S. Ahmad and M. S. Osman, New exact solutions of (3+1)-dimensional modified KdV-Zakharov-Kuznetsov equation by Sardar-subequation method, Opt. Quantum Electron., 2024, 56, 1163. doi: 10.1007/s11082-024-07073-4

    CrossRef Google Scholar

    [30] R. F. Zhang, M. C. Li, J. Y. Gan, et al., Novel trial functions and rogue waves of generalized breaking soliton equation via bilinear neural network method, Chaos, Soliton. Fract., 2022, 154, 111692. doi: 10.1016/j.chaos.2021.111692

    CrossRef Google Scholar

Figures(7)

Article Metrics

Article views(24) PDF downloads(14) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint