2025 Volume 15 Issue 5
Article Contents

Jinwen Wu, Xiaoling Hao, Kun Li. DISCONTINUOUS FRACTIONAL BOUNDARY VALUE PROBLEMS WITH ORDER $ \alpha\in (1,2) $[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 2866-2883. doi: 10.11948/20240478
Citation: Jinwen Wu, Xiaoling Hao, Kun Li. DISCONTINUOUS FRACTIONAL BOUNDARY VALUE PROBLEMS WITH ORDER $ \alpha\in (1,2) $[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 2866-2883. doi: 10.11948/20240478

DISCONTINUOUS FRACTIONAL BOUNDARY VALUE PROBLEMS WITH ORDER $ \alpha\in (1,2) $

  • Author Bio: Email: 32236074@mail.imu.edu.cn(J. Wu); Email: qslikun@qfnu.edu.cn(K. Li)
  • Corresponding author: Xiaoling Hao, xlhao1883@163.com(X. Hao) 
  • Fund Project: The authors were supported by National Natural Science Foundation of China (Nos. 12361027, 12401160) and the Natural Science Foundation of Shandong Province (No. ZR2024MA020)
  • This paper focuses on investigating the discontinuous fractional Sturm-Liouville problem equipped with a transmission condition of order $ \alpha \in(1,2) $. Through rigorous analysis, it is demonstrated that the eigenvalues and their corresponding eigenfunctions of this problem coincide with those of the constructed operator in Hilbert space. Furthermore, a necessary and sufficient condition for the existence of eigenvalues is established, providing a theoretical foundation for the spectral characterization of such fractional boundary value problems.

    MSC: 34B24, 34L20, 34L05
  • 加载中
  • [1] Z. Akdoğan, A. Yakar and M. Demirci, Discontinuous fractional Sturm– Liouville problems with transmission conditions, Applied Mathematics and Computation, 2019, 350, 1–10. doi: 10.3969/j.issn.1006-6330.2019.01.001

    CrossRef Google Scholar

    [2] G. Freiling and V. A. Yurko, Inverse Sturm-Liouville Problems and their Applications, Huntington: NOVA Science Publishers, 2001.

    Google Scholar

    [3] K. M. Furati and M. D. Kassim, Existence and uniqueness for a problem involving Hilfer fractional derivative, Computers and Mathematics with Applications, 2012, 64(6), 1616–1626. doi: 10.1016/j.camwa.2012.01.009

    CrossRef Google Scholar

    [4] H. Gu and J. J. Trujillo, Existence of mild solution for evolution equation with Hilfer fractional derivative, Applied Mathematics and Computation, 2015, 257, 344–354. doi: 10.1016/j.amc.2014.10.083

    CrossRef Google Scholar

    [5] G. Gündüz and A. Gündüz, Viscoelasticity and pattern formations in stock market indices, The European Physical Journal B, 2017, 90, 1–18. doi: 10.1140/epjb/e2016-70551-2

    CrossRef Google Scholar

    [6] M. Kadakal and O. S. Mukhtarov, Discontinuous Sturm–Liouville problems containing eigenparameter in the boundary conditions, Acta Mathematica Sinica, 2006, 22(5), 1519–1528. doi: 10.1007/s10114-005-0751-x

    CrossRef Google Scholar

    [7] M. Kadakal and O. S. Mukhtarov, Sturm–Liouville problems with discontinuities at two points, Computers and Mathematics with Applications, 2007, 54(11–12), 1367–1379. doi: 10.1016/j.camwa.2006.05.032

    CrossRef Google Scholar

    [8] T. Kherraz, M. Benbachir, M. Lakrib, E. S. Mohammad, K. A. K. Mohammed and A. B. Shailesh, Existence and uniqueness results for fractional boundary value problems with multiple orders of fractional derivatives and integrals, Chaos, Solitons & Fractals, 2023, 166, 113007.

    Google Scholar

    [9] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, 2006.

    Google Scholar

    [10] M. Klimek and O. P. Agrawal, Fractional Sturm–Liouville problem, Computers and Mathematics with Applications, 2013, 66(5), 795–812. doi: 10.1016/j.camwa.2012.12.011

    CrossRef Google Scholar

    [11] R. J. Krueger, Inverse problems for nonabsorbing media with discontinuous material properties, Journal of Mathematical Physics, 1982, 23(3), 396–404. doi: 10.1063/1.525358

    CrossRef Google Scholar

    [12] Y. Luchko, General fractional integrals and derivatives and their applications, Physica D: Nonlinear Phenomena, 2023, 133906.

    Google Scholar

    [13] F. Mainardi, Fractional Calculus: Some Basic Problems in Continuum and Statistical Mechanics, Springer Vienna, 1997.

    Google Scholar

    [14] V. A. Marchenko, Sturm-Liouville Operators and Applications, American Mathematical Soc., 2011.

    Google Scholar

    [15] Q. Meng, X. Hao and K. Li, Fractional dissipative Sturm–Liouville problems with discontinuity and eigen-dependent boundary conditions, Journal of Applied Analysis and Computation, 2023, 13(1), 445–457. doi: 10.11948/20220248

    CrossRef Google Scholar

    [16] O. S. Mukhtarov and E. Tunç, Eigenvalue problems for Sturm Liouville equations with transmission conditions, Israel Journal of Mathematics, 2004, 144, 367–380. doi: 10.1007/BF02916718

    CrossRef Google Scholar

    [17] M. Ovidio, Fractional boundary value problems, Fractional Calculus and Applied Analysis, 2022, 25(1), 29–59. doi: 10.1007/s13540-021-00004-0

    CrossRef Google Scholar

    [18] R. del-Rio, F. Gesztesy and B. Simon, Inverse spectral analysis with partial information on the potential, III. Updating boundary conditions, International Mathematics Research Notices, 1997, 1997(15), 751–758. doi: 10.1155/S1073792897000494

    CrossRef Google Scholar

    [19] A. R. Sevinik, Ü. Aksoy, E. Karapinar and M. E. Inci, On the solution of a boundary value problem associated with a fractional differential equation, Mathematical Methods in the Applied Sciences, 2024, 47(13), 10928–10939. doi: 10.1002/mma.6652

    CrossRef Google Scholar

    [20] H. M. Srivastava, Fractional-order derivatives and integrals: Introductory overview and recent developments, Kyungpook Mathematical Journal, 2020, 60(1), 73–116.

    Google Scholar

    [21] J. R. Wang and Y. Zhang, Nonlocal initial value problems for differential equations with Hilfer fractional derivative, Applied Mathematics and Computation, 2015, 266, 850–859.

    Google Scholar

    [22] Z. Wang, The local discontinuous Galerkin finite element method for a multiterm time-fractional initial-boundary value problem, Journal of Applied Mathematics and Computing, 2022, 68(6), 4391–4413.

    Google Scholar

    [23] A. Yakar and Z. Akdoğan, On the fundamental solutions of a discontinuous fractional boundary value problem, Advances in Difference Equations, 2017, 2017, 1–15.

    Google Scholar

    [24] X. J. Yang, General Fractional Derivatives: Theory, Methods and Applications, Chapman and Hall/CRC, 2019.

    Google Scholar

    [25] M. Zayernouri and G. E. Karniadakis, Fractional Sturm–Liouville eigen-problems: Theory and numerical approximation, Journal of Computational Physics, 2013, 252, 495–517.

    Google Scholar

    [26] X. Y. Zhang and J. Sun, A class of fourth-order differential operator with eigenparameter-dependent boundary and transmission conditions, Acta Mathematicae Applicatae Sinica-English Series, 2013, 26(1), 205–219.

    Google Scholar

Article Metrics

Article views(45) PDF downloads(19) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint