Citation: | Xue Zhao, Xianming Hou, Qingyan Wu, Zunwei Fu. MORREY MEETS MUCKENHOUPT: A NOTE ON NAKAI'S GENERALIZED MORREY SPACES AND APPLICATIONS[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 2884-2899. doi: 10.11948/20240481 |
In this paper, we introduce the generalized one-sided weighted Morrey spaces, which extend Nakai's generalized Morrey spaces to a wider function class, the one-sided Muckenhoupt weighted case. Morrey matching Muckenhoupt enables us to study both the weak and strong type boundedness of one-sided sublinear operators under certain size conditions. Moreover, we establish the boundedness of the Riemann-Liouville fractional integral and the compactness of the truncated Riemann-Liouville integral on these spaces. As an application, we obtain the existence and uniqueness of solutions to a Cauchy-type problem for fractional differential equations.
[1] | D. R. Adams, A note on Riesz potentials, Duke Math. J., 1975, 42, 765–778. |
[2] | H. Aimar, L. Forzani and F. J. Martín-Reyes, On weighted inequalities for singular integrals, Proc. Amer. Math. Soc., 1997, 125(7), 2057–2064. doi: 10.1090/S0002-9939-97-03787-8 |
[3] | W. Chen, Z. Fu, L. Grafakos and Y. Wu, Fractional Fourier transforms on Lp and applications, Appl. Comput. Harmon. Anal., 2021, 55, 71–96. doi: 10.1016/j.acha.2021.04.004 |
[4] | F. Chiarenza, Morrey spaces and Hardy-Littlewood maximal function, Rend. Mat. Appl. (7), 1987, 7(3), 273–279. |
[5] | B. Dong, Z. Fu and J. Xu, Riesz-Kolmogorov theorem in variable exponent Lebesgue spaces and its applications to Riemann-Liouville fractional differential equations, Sci. China Math., 2018, 61, 1807–1824. doi: 10.1007/s11425-017-9274-0 |
[6] | Z. Fu, R. Gong, E. Pozzi and Q. Wu, Cauchy-Szegö commutators on weighted Morrey spaces, Math. Nachr., 2023, 296(5), 1859–1885. doi: 10.1002/mana.202000139 |
[7] | Z. Fu, L. Grafakos, Y. Lin, Y. Wu and S. Yang, Riesz transform associated with the fractional Fourier transform and applications in image edge detection, Appl. Comput. Harmon. Anal., 2023, 66, 211–235. doi: 10.1016/j.acha.2023.05.003 |
[8] | W. Guo and G. Zhao, On relatively compact sets in quasi-Banach function spaces, Proc. Amer. Math. Soc., 2020, 148(8), 3359–3373. doi: 10.1090/proc/14963 |
[9] | J. Huang, P. Li, Y. Liu and S. Shi, Fractional heat semigroups on metric measure spaces with finite densities and applications to fractional dissipative equations, Nonlinear Anal., 2020, 195, 111722. doi: 10.1016/j.na.2019.111722 |
[10] | T. Iida and S. Nakamura, A note on the Fefferman-Stein inequality on Morrey spaces, Rev. Mat. Complut., 2017, 30, 525–545. doi: 10.1007/s13163-016-0217-y |
[11] | T. Iida, E. Sato, Y. Sawano and H. Tanaka, Weighted norm inequalities for multilinear fractional operators on Morrey spaces, Studia Math., 2011, 205(2), 139–170. doi: 10.4064/sm205-2-2 |
[12] | A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, 2006. |
[13] | Y. Komori and S. Shirai, Weighted Morrey spaces and a singular integral operator, Math. Nachr., 2009, 282(2), 219–231. doi: 10.1002/mana.200610733 |
[14] | S. Lappas, Extrapolation of compactness on weighted Morrey spaces, Studia Math., 2022, 265, 177–195. doi: 10.4064/sm210607-20-9 |
[15] | X. Li and D. Yang, Boundedness of some sublinear operators on Herz spaces, Illinois J. Math., 1996, 40(3), 484–501. |
[16] | F. Liu and P. Cui, Variation operators for singular integrals and their commutators on weighted Morrey spaces and Sobolev spaces, Sci. China Math., 2022, 65(6), 1267–1292. doi: 10.1007/s11425-020-1828-6 |
[17] | F. Liu, Z. Fu and Y. Wu, Variation operators for commutators of rough singular integrals on weighted Morrey spaces, J. Appl. Anal. Comput., 2024, 14(1), 263–282. |
[18] | F. Liu, S. Jhang, S. -K. Oh and Z. Fu, Variation inequalities for one-sided singular integrals and related commutators, Mathematics, 2019, 7(10), 876. |
[19] | S. Lu, D. Yang and Z. Zhou, Sublinear operators with rough kernel on generalized Morrey spaces, Hokkaido Math. J., 1998, 27(1), 219–232. |
[20] | F. J. Martín-Reyes, New proofs of weighted inequalities for the one-sided Hardy-Littlewood maximal functions, Proc. Amer. Math. Soc., 1993, 117(3), 691–698. |
[21] | T. Mizuhara, Boundedness of some classical operators on generalized Morrey spaces, in ICM-90 Satellite Conference Proceedings: Harmonic Analysis, Springer, 1991, 183–189. |
[22] | C. B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., 1938, 43(1), 126–166. |
[23] | E. Nakai, Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces, Math. Nachr., 1994, 166(1), 95–103. |
[24] | S. Nakamura, Generalized weighted Morrey spaces and classical operators, Math. Nachr., 2016, 289(17–18), 2235–2262. |
[25] | S. Nakamura, Y. Sawano and H. Tanaka, The fractional operators on weighted Morrey spaces, J. Geom. Anal., 2018, 28, 1502–1524. |
[26] | M. Rosenthal and H. Triebel, Morrey spaces, their duals and preduals, Rev. Mat. Complut., 2015, 28(1), 1–30. |
[27] | S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science, 1993. |
[28] | E. Sawyer, Weighted inequalities for the one-sided Hardy-Littlewood maximal functions, Trans. Amer. Math. Soc., 1986, 297(1), 53–61. |
[29] | J. Schauder, Der fixpunktsatz in funktionalraümen, Studia Math., 1930, 2(1), 171–180. |
[30] | S. Shi and Z. Fu, Estimates of some operators on one-sided weighted Morrey spaces, Abstr. Appl. Anal., 2013, 2013, 829218. |
[31] | S. Shi and L. Zhang, Dual characterization of fractional capacity via solution of fractional p-laplace equation, Math. Nachr., 2020, 293(11), 2233–2247. |
[32] | L. Softova, Singular integrals and commutators in generalized Morrey spaces, Acta Math. Sin. (Engl. Ser. ), 2006, 22(3), 757–766. |
[33] | P. R. Stinga and M. Vaughan, One-sided fractional derivatives, fractional Laplacians, and weighted Sobolev spaces, Nonlinear Anal., 2020, 193, 111505. |
[34] | J. Wu, Q. Wu, Y. Yang, P. Dang and G. Ren, Riemann-Liouville fractional integrals and derivatives on Morrey spaces and applications to a Cauchy-type problem, J. Appl. Anal. Comput., 2024, 14(2), 1078–1096. |
[35] | W. Yuan, W. Sickel and D. Yang, Morrey and Campanato meet Besov, Lizorkin and Triebel, Springer, 2010. |