2025 Volume 15 Issue 5
Article Contents

Xue Zhao, Xianming Hou, Qingyan Wu, Zunwei Fu. MORREY MEETS MUCKENHOUPT: A NOTE ON NAKAI'S GENERALIZED MORREY SPACES AND APPLICATIONS[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 2884-2899. doi: 10.11948/20240481
Citation: Xue Zhao, Xianming Hou, Qingyan Wu, Zunwei Fu. MORREY MEETS MUCKENHOUPT: A NOTE ON NAKAI'S GENERALIZED MORREY SPACES AND APPLICATIONS[J]. Journal of Applied Analysis & Computation, 2025, 15(5): 2884-2899. doi: 10.11948/20240481

MORREY MEETS MUCKENHOUPT: A NOTE ON NAKAI'S GENERALIZED MORREY SPACES AND APPLICATIONS

  • Author Bio: Email: zhaoxue202309@163.com(X. Zhao); Email: wuqingyan@lyu.edu.cn(Q. Wu); Email: fuzunwei@lyu.edu.cn(Z. Fu)
  • Corresponding author: Email: houxianming37@l63.com(X. Hou) 
  • Fund Project: This work was supported by the National Natural Science Foundation of China (Nos. 12301118, 12071197, 12171221, 12271232) and the Natural Science Foundation of Shandong Province (Nos. ZR2021MA031, ZR2021MA079)
  • In this paper, we introduce the generalized one-sided weighted Morrey spaces, which extend Nakai's generalized Morrey spaces to a wider function class, the one-sided Muckenhoupt weighted case. Morrey matching Muckenhoupt enables us to study both the weak and strong type boundedness of one-sided sublinear operators under certain size conditions. Moreover, we establish the boundedness of the Riemann-Liouville fractional integral and the compactness of the truncated Riemann-Liouville integral on these spaces. As an application, we obtain the existence and uniqueness of solutions to a Cauchy-type problem for fractional differential equations.

    MSC: 42B35, 42B20, 26A33
  • 加载中
  • [1] D. R. Adams, A note on Riesz potentials, Duke Math. J., 1975, 42, 765–778.

    Google Scholar

    [2] H. Aimar, L. Forzani and F. J. Martín-Reyes, On weighted inequalities for singular integrals, Proc. Amer. Math. Soc., 1997, 125(7), 2057–2064. doi: 10.1090/S0002-9939-97-03787-8

    CrossRef Google Scholar

    [3] W. Chen, Z. Fu, L. Grafakos and Y. Wu, Fractional Fourier transforms on Lp and applications, Appl. Comput. Harmon. Anal., 2021, 55, 71–96. doi: 10.1016/j.acha.2021.04.004

    CrossRef Google Scholar

    [4] F. Chiarenza, Morrey spaces and Hardy-Littlewood maximal function, Rend. Mat. Appl. (7), 1987, 7(3), 273–279.

    Google Scholar

    [5] B. Dong, Z. Fu and J. Xu, Riesz-Kolmogorov theorem in variable exponent Lebesgue spaces and its applications to Riemann-Liouville fractional differential equations, Sci. China Math., 2018, 61, 1807–1824. doi: 10.1007/s11425-017-9274-0

    CrossRef Google Scholar

    [6] Z. Fu, R. Gong, E. Pozzi and Q. Wu, Cauchy-Szegö commutators on weighted Morrey spaces, Math. Nachr., 2023, 296(5), 1859–1885. doi: 10.1002/mana.202000139

    CrossRef Google Scholar

    [7] Z. Fu, L. Grafakos, Y. Lin, Y. Wu and S. Yang, Riesz transform associated with the fractional Fourier transform and applications in image edge detection, Appl. Comput. Harmon. Anal., 2023, 66, 211–235. doi: 10.1016/j.acha.2023.05.003

    CrossRef Google Scholar

    [8] W. Guo and G. Zhao, On relatively compact sets in quasi-Banach function spaces, Proc. Amer. Math. Soc., 2020, 148(8), 3359–3373. doi: 10.1090/proc/14963

    CrossRef Google Scholar

    [9] J. Huang, P. Li, Y. Liu and S. Shi, Fractional heat semigroups on metric measure spaces with finite densities and applications to fractional dissipative equations, Nonlinear Anal., 2020, 195, 111722. doi: 10.1016/j.na.2019.111722

    CrossRef Google Scholar

    [10] T. Iida and S. Nakamura, A note on the Fefferman-Stein inequality on Morrey spaces, Rev. Mat. Complut., 2017, 30, 525–545. doi: 10.1007/s13163-016-0217-y

    CrossRef Google Scholar

    [11] T. Iida, E. Sato, Y. Sawano and H. Tanaka, Weighted norm inequalities for multilinear fractional operators on Morrey spaces, Studia Math., 2011, 205(2), 139–170. doi: 10.4064/sm205-2-2

    CrossRef Google Scholar

    [12] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, 2006.

    Google Scholar

    [13] Y. Komori and S. Shirai, Weighted Morrey spaces and a singular integral operator, Math. Nachr., 2009, 282(2), 219–231. doi: 10.1002/mana.200610733

    CrossRef Google Scholar

    [14] S. Lappas, Extrapolation of compactness on weighted Morrey spaces, Studia Math., 2022, 265, 177–195. doi: 10.4064/sm210607-20-9

    CrossRef Google Scholar

    [15] X. Li and D. Yang, Boundedness of some sublinear operators on Herz spaces, Illinois J. Math., 1996, 40(3), 484–501.

    Google Scholar

    [16] F. Liu and P. Cui, Variation operators for singular integrals and their commutators on weighted Morrey spaces and Sobolev spaces, Sci. China Math., 2022, 65(6), 1267–1292. doi: 10.1007/s11425-020-1828-6

    CrossRef Google Scholar

    [17] F. Liu, Z. Fu and Y. Wu, Variation operators for commutators of rough singular integrals on weighted Morrey spaces, J. Appl. Anal. Comput., 2024, 14(1), 263–282.

    Google Scholar

    [18] F. Liu, S. Jhang, S. -K. Oh and Z. Fu, Variation inequalities for one-sided singular integrals and related commutators, Mathematics, 2019, 7(10), 876.

    Google Scholar

    [19] S. Lu, D. Yang and Z. Zhou, Sublinear operators with rough kernel on generalized Morrey spaces, Hokkaido Math. J., 1998, 27(1), 219–232.

    Google Scholar

    [20] F. J. Martín-Reyes, New proofs of weighted inequalities for the one-sided Hardy-Littlewood maximal functions, Proc. Amer. Math. Soc., 1993, 117(3), 691–698.

    Google Scholar

    [21] T. Mizuhara, Boundedness of some classical operators on generalized Morrey spaces, in ICM-90 Satellite Conference Proceedings: Harmonic Analysis, Springer, 1991, 183–189.

    Google Scholar

    [22] C. B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., 1938, 43(1), 126–166.

    Google Scholar

    [23] E. Nakai, Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces, Math. Nachr., 1994, 166(1), 95–103.

    Google Scholar

    [24] S. Nakamura, Generalized weighted Morrey spaces and classical operators, Math. Nachr., 2016, 289(17–18), 2235–2262.

    Google Scholar

    [25] S. Nakamura, Y. Sawano and H. Tanaka, The fractional operators on weighted Morrey spaces, J. Geom. Anal., 2018, 28, 1502–1524.

    Google Scholar

    [26] M. Rosenthal and H. Triebel, Morrey spaces, their duals and preduals, Rev. Mat. Complut., 2015, 28(1), 1–30.

    Google Scholar

    [27] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science, 1993.

    Google Scholar

    [28] E. Sawyer, Weighted inequalities for the one-sided Hardy-Littlewood maximal functions, Trans. Amer. Math. Soc., 1986, 297(1), 53–61.

    Google Scholar

    [29] J. Schauder, Der fixpunktsatz in funktionalraümen, Studia Math., 1930, 2(1), 171–180.

    Google Scholar

    [30] S. Shi and Z. Fu, Estimates of some operators on one-sided weighted Morrey spaces, Abstr. Appl. Anal., 2013, 2013, 829218.

    Google Scholar

    [31] S. Shi and L. Zhang, Dual characterization of fractional capacity via solution of fractional p-laplace equation, Math. Nachr., 2020, 293(11), 2233–2247.

    Google Scholar

    [32] L. Softova, Singular integrals and commutators in generalized Morrey spaces, Acta Math. Sin. (Engl. Ser. ), 2006, 22(3), 757–766.

    Google Scholar

    [33] P. R. Stinga and M. Vaughan, One-sided fractional derivatives, fractional Laplacians, and weighted Sobolev spaces, Nonlinear Anal., 2020, 193, 111505.

    Google Scholar

    [34] J. Wu, Q. Wu, Y. Yang, P. Dang and G. Ren, Riemann-Liouville fractional integrals and derivatives on Morrey spaces and applications to a Cauchy-type problem, J. Appl. Anal. Comput., 2024, 14(2), 1078–1096.

    Google Scholar

    [35] W. Yuan, W. Sickel and D. Yang, Morrey and Campanato meet Besov, Lizorkin and Triebel, Springer, 2010.

    Google Scholar

Article Metrics

Article views(47) PDF downloads(17) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint