Citation: | Mincheng Wang, Pingrun Li. SOLVABILITY OF A CLASS OF CONVOLUTION INTEGRAL EQUATIONS WITH SINGULAR INTEGRAL–DIFFERENTIAL OPERATORS[J]. Journal of Applied Analysis & Computation, 2025, 15(4): 2408-2426. doi: 10.11948/20240485 |
In this paper, we consider a class of convolution integral equations with singular integral-differential operators. First, we establish the relation between Fourier analysis theory and Riemann boundary value problems, and investigate the theory of Noether solvability and some properties of Cauchy integral operators. Via using Fourier transform, we convert such equations into complex boundary value problems. By means of the regularity theory of the classical Riemann-Hilbert problems and of the theory of complex analysis, we obtain the conditions of Noether solvability and analytical solutions. In addition, we also study the analytical property of solution near nodes. Thus, this article is significant for the study of developing complex analysis, functional analysis, integral equations and complex boundary value problems, and it also provides theoretical support to quantum field theory and Ising model.
[1] | L. K. Arruda and J. Lenells, Long-time asymptotics for the derivative nonlinear schrödinger equation on the half-line, Nonlinearity, 2017, 30(11), 4141–4172. doi: 10.1088/1361-6544/aa84c6 |
[2] | S. W. Bai, P. R. Li and M. Sun, Closed-form solutions for several classes of singular integral equations with convolution and cauchy operator, Complex Var. Elliptic Equ., 2023, 68(11), 1916–1939. doi: 10.1080/17476933.2022.2097661 |
[3] | H. Begehr and T. Vaitekhovich, Harmonic boundary value problems in half disc and half ring, Funct. Approx. Comment., 2009, 40(2), 251–282. |
[4] | R. A. Blaya, J. B. Reyes, F. Brackx, et al., Cauchy integral formulae in hermitian quaternionic clifford analysis, Compl. Anal. Oper. Theory., 2012, 6(5), 971–985. doi: 10.1007/s11785-011-0168-8 |
[5] | Z. Błocki, Suita conjecture and the ohsawa-takegoshi extension theorem, Invent. Math., 2013, 193(1), 149–158. doi: 10.1007/s00222-012-0423-2 |
[6] | M. C. De Bonis and C. Laurita, Numerical solution of systems of Cauchy singular integral equations with constant coefficients, Appl. Math. Comput., 2012, 219(4), 1391–1410. |
[7] | L. H. Chuan, N. V. Mau and N. M. Tuan, On a class of singular integral equations with the linear fractional Carleman shift and the degenerate kernel, Complex Var. Elliptic Equ., 2008, 53(2), 117–137. doi: 10.1080/17476930701619782 |
[8] | J. Colliander, M. Keel, G. Staffilani, et al., Transfer of energy to high frequencies in the cubic defocusing nonlinear schrödinger equation, Invent. Math., 2010, 181(1), 39–113. doi: 10.1007/s00222-010-0242-2 |
[9] | H. Du and J. H. Shen, Reproducing kernel method of solving singular integral equation with cosecant kernel, J. Math. Anal. Appl., 2008, 348(1), 308–314. doi: 10.1016/j.jmaa.2008.07.037 |
[10] | R. V. Duduchava, Wiener-hopf integral operators, Math. Nachr., 1975, 65, 59–82. doi: 10.1002/mana.19750650106 |
[11] | R. V. Duduchava, Integral equations of convolution type with discontinuous coefficients, Math. Nachr., 1977, 79, 75–98. doi: 10.1002/mana.19770790108 |
[12] | F. D. Gahov and U. I. Cherskiy, Integral Equations of Convolution Type, Nauka, Moscow, 1980. |
[13] | C. Gomez, H. Prado and S. Trofimchuk, Separation dichotomy and wavefronts for a nonlinear convolution equation, J. Math. Anal. Appl., 2014, 420(1), 1–19. doi: 10.1016/j.jmaa.2014.05.064 |
[14] | Y. F. Gong, L. T. Leong and T. Qiao, Two integral operators in clifford analysis, J. Math. Anal. Appl., 2009, 354(2), 435–444. doi: 10.1016/j.jmaa.2008.12.021 |
[15] | B. Guo, N. Liu and Y. Wang, Long–time asymptotics for the Hirota equation on the half–line, Nonlinear Anal., 2018, 174, 118–140. doi: 10.1016/j.na.2018.04.004 |
[16] | C. Hongler and S. Smirnov, The energy density in the planar Ising model, Acta. Math., 2013, 211(2), 191–225. doi: 10.1007/s11511-013-0102-1 |
[17] | L. Hörmander, The Analysis of Linear Partial Differential Operators Ⅲ: Pseudo-Differential Operators, Springer Science & Business Media, Berlin, 2007. |
[18] | B. Hu, T. Xia and W. Ma, Riemann–Hilber approach for an initial–boundary value problem of the two–component modified Korteweg–de Vries equation on the half–line, Appl. Math. Comput., 2018, 332, 148–159. |
[19] | N. K. Karapetyants and S. G. Samko, Singular convolution operators with a discontinuous symbol, Sibirsk. Mat. Z., 1975, 16(1), 35–48. |
[20] | R. Katani and S. McKee, Numerical solution of two–dimensional weakly singular Volterra integral equations with non–smooth solutions, J. Comput. Appl. Math., 2022, 402, 113779. doi: 10.1016/j.cam.2021.113779 |
[21] | D. Kinzebulatov and K. Madou, Stochastic equations with time–dependent singular drift, J. Diff. Eqs., 2022, 337, 255–293. doi: 10.1016/j.jde.2022.07.042 |
[22] | E. Krajník, V. Montesinos, P. Zizler and V. Zizler, Solving singular convolution equations using the inverse fast Fourier transform, Appl. Math–Czech., 2012, 57(5), 543–550. doi: 10.1007/s10492-012-0032-9 |
[23] | Y. X. Lei, W. W. Zhang, H. Q. Wang and P. R. Li, Noetherian solvability for convolution singular integral equations with finite translations in the case of normal type, J. Appl. Anal. Comput., 2025, 15(1), 587–604. |
[24] | P. R. Li, One class of generalized boundary value problem for analytic functions, Bound. Value Probl., 2015, 2015(1), 40. doi: 10.1186/s13661-015-0301-0 |
[25] | P. R. Li, Two classes of linear equations of discrete convolution type with harmonic singular operators, Complex Var. Elliptic Equ., 2016, 61(1), 67–75. doi: 10.1080/17476933.2015.1057712 |
[26] | P. R. Li, Generalized convolution–type singular integral equations, Appl. Math. Comput., 2017, 311, 314–323. doi: 10.1016/j.cam.2016.07.027 |
[27] | P. R. Li, Generalized boundary value problems for analytic functions with convolutions and its applications, Math. Meth. Appl. Sci., 2019, 42(8), 2631–2645. doi: 10.1002/mma.5538 |
[28] | P. R. Li, On solvability of singular integral-differential equations with convolution, J. Appl. Anal. Comput, 2019, 9(3), 1071–1082. |
[29] | P. R. Li, Singular integral equations of convolution type with cauchy kernel in the class of exponentially increasing functions, Appl. Math. Comput., 2019, 344, 116–127. |
[30] | P. R. Li, Non-normal type singular integral-differential equations by Riemann-Hilbert approach, J. Math. Anal. Appl., 2020, 483(2), 123643. doi: 10.1016/j.jmaa.2019.123643 |
[31] | P. R. Li, The solvability and explicit solutions of singular integral–differential equations of non-normal type via Riemann–Hilbert problem, J. Comput. Appl. Math., 2020, 374, 112759. doi: 10.1016/j.cam.2020.112759 |
[32] | P. R. Li, Solvability theory of convolution singular integral equations via Riemann–Hilbert approach, J. Comput. Appl. Math., 2020, 370, 112601. doi: 10.1016/j.cam.2019.112601 |
[33] | P. R. Li, Existence of analytic solutions for some classes of singular integral equations of non-normal type with convolution kernel, Acta Appl. Math., 2022, 181(1), 5. doi: 10.1007/s10440-022-00522-w |
[34] | P. R. Li, Holomorphic solutions and solvability theory for a class of linear complete singular integro-differential equations with convolution by riemann–hilbert method, Anal. Math. Phys., 2022, 12(6), 146. doi: 10.1007/s13324-022-00759-6 |
[35] | P. R. Li and L. X. Cao, Linear bvps and sies for generalized regular functions in clifford analysis, J. Funct. Spaces., 2018, 2018(1), 6967149. |
[36] | P. R. Li and G. B. Ren, Some classes of equations of discrete type with harmonic singular operator and convolution, Applied Mathematics and Computation, 2016, 284, 185–194. doi: 10.1016/j.amc.2016.03.004 |
[37] | P. R. Li and G. B. Ren, Solvability of singular integro-differential equations via Riemann–Hilbert problem, J. Diff. Eqs., 2018, 265(11), 5455–5471. doi: 10.1016/j.jde.2018.07.056 |
[38] | P. R. Li, Y. Xia, W. W. Zhang, et al., Uniqueness and existence of solutions to some kinds of singular convolution integral equations with cauchy kernel via R–H problems, Acta Appl. Math., 2023, 184(1), 2. doi: 10.1007/s10440-023-00556-8 |
[39] | P. R. Li, N. Zhang, M. C. Wang and Y. J. Zhou, An efficient method for singular integral equations of non-normal type with two convolution kernels, Complex Var. Elliptic Equ., 2023, 68(4), 632–648. doi: 10.1080/17476933.2021.2009817 |
[40] | G. S. Litvinchuk, Solvability Theory of Boundary Value Problems and Singular Integral Equations with Shift, Kluwer Academic Publishers, London, 2004. |
[41] | J. K. Lu, Boundary Value Problems for Analytic Functions, World Sci., Singapore, 2004. |
[42] | W. X. Ma, Nonlocal PT–symmetric integrable equations and related Riemann–Hilbert problems, Partial Differential Equations in Applied Mathematics, 2021, 4, 100190. doi: 10.1016/j.padiff.2021.100190 |
[43] | W. X. Ma, Nonlocal integrable mKdV equations by two nonlocal reductions and their soliton solutions, J. Geom. Phys., 2022, 177, 104522. doi: 10.1016/j.geomphys.2022.104522 |
[44] | N. I. Muskhelishvilli, Singular Integral Equations, Nauka, Moscow, 2002. |
[45] | T. Nakazi and T. Yamamoto, Normal singular integral operators with Cauchy kernel on L2, Integr. Equat. Oper. Th., 2014, 78, 233–248. doi: 10.1007/s00020-013-2104-y |
[46] | G. B. Ren, U. Kaehler, J. H. Shi and C. W. Liu, Hardy–littlewood inequalities for fractional derivatives of invariant harmonic functions, Complex Anal. Oper. Theory., 2012, 6(2), 373–396. doi: 10.1007/s11785-010-0123-0 |
[47] | M. Sun, P. R. Li and S. W. Bai, A new efficient method for two classes of convolution singular integral equations of non-normal type with cauchy kernels, J. Appl. Anal. Comput., 2022, 12(4), 1250–1273. |
[48] | N. M. Tuan and N. T. T. Huyen, The solvability and explicit solutions of two integral equations via generalized convolutions, J. Math. Anal. Appl., 2010, 369(2), 712–718. doi: 10.1016/j.jmaa.2010.04.019 |
[49] | T. Tuan and V. K. Tuan, Young inequalities for a Fourier cosine and sine polyconvolution and a generalized convolution, Integr. Transf. Spec. F., 2023, 34(9), 690–702. doi: 10.1080/10652469.2023.2182776 |
[50] | T. Wang, S. Liu and Z. Zhang, Singular expansions and collocation methods for generalized abel integral equations, J. Comput. Appl. Math., 2023, 429, 115240. doi: 10.1016/j.cam.2023.115240 |
[51] | P. Wójcik, M. Sheshko and S. Sheshko, Application of faber polynomials to the approximate solution of singular integral equations with the Cauchy kernel, Diff. Equat., 2013, 49, 198–209. doi: 10.1134/S0012266113020067 |
[52] | I. Zamanpour and R. Ezzati, Operational matrix method for solving fractional weakly singular 2D partial Volterra integral equations, J. Comput. Appl. Math., 2023, 419, 114704. doi: 10.1016/j.cam.2022.114704 |
[53] | W. W. Zhang, Y. X. Lei and P. R. Li, The solvability of some kinds of singular integral equations of convolution type with variable integral limits, J. Appl. Anal. Comput., 2024, 14(4), 2207–2227. |