2025 Volume 15 Issue 4
Article Contents

Mincheng Wang, Pingrun Li. SOLVABILITY OF A CLASS OF CONVOLUTION INTEGRAL EQUATIONS WITH SINGULAR INTEGRAL–DIFFERENTIAL OPERATORS[J]. Journal of Applied Analysis & Computation, 2025, 15(4): 2408-2426. doi: 10.11948/20240485
Citation: Mincheng Wang, Pingrun Li. SOLVABILITY OF A CLASS OF CONVOLUTION INTEGRAL EQUATIONS WITH SINGULAR INTEGRAL–DIFFERENTIAL OPERATORS[J]. Journal of Applied Analysis & Computation, 2025, 15(4): 2408-2426. doi: 10.11948/20240485

SOLVABILITY OF A CLASS OF CONVOLUTION INTEGRAL EQUATIONS WITH SINGULAR INTEGRAL–DIFFERENTIAL OPERATORS

  • In this paper, we consider a class of convolution integral equations with singular integral-differential operators. First, we establish the relation between Fourier analysis theory and Riemann boundary value problems, and investigate the theory of Noether solvability and some properties of Cauchy integral operators. Via using Fourier transform, we convert such equations into complex boundary value problems. By means of the regularity theory of the classical Riemann-Hilbert problems and of the theory of complex analysis, we obtain the conditions of Noether solvability and analytical solutions. In addition, we also study the analytical property of solution near nodes. Thus, this article is significant for the study of developing complex analysis, functional analysis, integral equations and complex boundary value problems, and it also provides theoretical support to quantum field theory and Ising model.

    MSC: 45E10, 45E05, 47G20, 30E25
  • 加载中
  • [1] L. K. Arruda and J. Lenells, Long-time asymptotics for the derivative nonlinear schrödinger equation on the half-line, Nonlinearity, 2017, 30(11), 4141–4172. doi: 10.1088/1361-6544/aa84c6

    CrossRef Google Scholar

    [2] S. W. Bai, P. R. Li and M. Sun, Closed-form solutions for several classes of singular integral equations with convolution and cauchy operator, Complex Var. Elliptic Equ., 2023, 68(11), 1916–1939. doi: 10.1080/17476933.2022.2097661

    CrossRef Google Scholar

    [3] H. Begehr and T. Vaitekhovich, Harmonic boundary value problems in half disc and half ring, Funct. Approx. Comment., 2009, 40(2), 251–282.

    Google Scholar

    [4] R. A. Blaya, J. B. Reyes, F. Brackx, et al., Cauchy integral formulae in hermitian quaternionic clifford analysis, Compl. Anal. Oper. Theory., 2012, 6(5), 971–985. doi: 10.1007/s11785-011-0168-8

    CrossRef Google Scholar

    [5] Z. Błocki, Suita conjecture and the ohsawa-takegoshi extension theorem, Invent. Math., 2013, 193(1), 149–158. doi: 10.1007/s00222-012-0423-2

    CrossRef Google Scholar

    [6] M. C. De Bonis and C. Laurita, Numerical solution of systems of Cauchy singular integral equations with constant coefficients, Appl. Math. Comput., 2012, 219(4), 1391–1410.

    Google Scholar

    [7] L. H. Chuan, N. V. Mau and N. M. Tuan, On a class of singular integral equations with the linear fractional Carleman shift and the degenerate kernel, Complex Var. Elliptic Equ., 2008, 53(2), 117–137. doi: 10.1080/17476930701619782

    CrossRef Google Scholar

    [8] J. Colliander, M. Keel, G. Staffilani, et al., Transfer of energy to high frequencies in the cubic defocusing nonlinear schrödinger equation, Invent. Math., 2010, 181(1), 39–113. doi: 10.1007/s00222-010-0242-2

    CrossRef Google Scholar

    [9] H. Du and J. H. Shen, Reproducing kernel method of solving singular integral equation with cosecant kernel, J. Math. Anal. Appl., 2008, 348(1), 308–314. doi: 10.1016/j.jmaa.2008.07.037

    CrossRef Google Scholar

    [10] R. V. Duduchava, Wiener-hopf integral operators, Math. Nachr., 1975, 65, 59–82. doi: 10.1002/mana.19750650106

    CrossRef Google Scholar

    [11] R. V. Duduchava, Integral equations of convolution type with discontinuous coefficients, Math. Nachr., 1977, 79, 75–98. doi: 10.1002/mana.19770790108

    CrossRef Google Scholar

    [12] F. D. Gahov and U. I. Cherskiy, Integral Equations of Convolution Type, Nauka, Moscow, 1980.

    Google Scholar

    [13] C. Gomez, H. Prado and S. Trofimchuk, Separation dichotomy and wavefronts for a nonlinear convolution equation, J. Math. Anal. Appl., 2014, 420(1), 1–19. doi: 10.1016/j.jmaa.2014.05.064

    CrossRef Google Scholar

    [14] Y. F. Gong, L. T. Leong and T. Qiao, Two integral operators in clifford analysis, J. Math. Anal. Appl., 2009, 354(2), 435–444. doi: 10.1016/j.jmaa.2008.12.021

    CrossRef Google Scholar

    [15] B. Guo, N. Liu and Y. Wang, Long–time asymptotics for the Hirota equation on the half–line, Nonlinear Anal., 2018, 174, 118–140. doi: 10.1016/j.na.2018.04.004

    CrossRef Google Scholar

    [16] C. Hongler and S. Smirnov, The energy density in the planar Ising model, Acta. Math., 2013, 211(2), 191–225. doi: 10.1007/s11511-013-0102-1

    CrossRef Google Scholar

    [17] L. Hörmander, The Analysis of Linear Partial Differential Operators Ⅲ: Pseudo-Differential Operators, Springer Science & Business Media, Berlin, 2007.

    Google Scholar

    [18] B. Hu, T. Xia and W. Ma, Riemann–Hilber approach for an initial–boundary value problem of the two–component modified Korteweg–de Vries equation on the half–line, Appl. Math. Comput., 2018, 332, 148–159.

    Google Scholar

    [19] N. K. Karapetyants and S. G. Samko, Singular convolution operators with a discontinuous symbol, Sibirsk. Mat. Z., 1975, 16(1), 35–48.

    Google Scholar

    [20] R. Katani and S. McKee, Numerical solution of two–dimensional weakly singular Volterra integral equations with non–smooth solutions, J. Comput. Appl. Math., 2022, 402, 113779. doi: 10.1016/j.cam.2021.113779

    CrossRef Google Scholar

    [21] D. Kinzebulatov and K. Madou, Stochastic equations with time–dependent singular drift, J. Diff. Eqs., 2022, 337, 255–293. doi: 10.1016/j.jde.2022.07.042

    CrossRef Google Scholar

    [22] E. Krajník, V. Montesinos, P. Zizler and V. Zizler, Solving singular convolution equations using the inverse fast Fourier transform, Appl. Math–Czech., 2012, 57(5), 543–550. doi: 10.1007/s10492-012-0032-9

    CrossRef Google Scholar

    [23] Y. X. Lei, W. W. Zhang, H. Q. Wang and P. R. Li, Noetherian solvability for convolution singular integral equations with finite translations in the case of normal type, J. Appl. Anal. Comput., 2025, 15(1), 587–604.

    Google Scholar

    [24] P. R. Li, One class of generalized boundary value problem for analytic functions, Bound. Value Probl., 2015, 2015(1), 40. doi: 10.1186/s13661-015-0301-0

    CrossRef Google Scholar

    [25] P. R. Li, Two classes of linear equations of discrete convolution type with harmonic singular operators, Complex Var. Elliptic Equ., 2016, 61(1), 67–75. doi: 10.1080/17476933.2015.1057712

    CrossRef Google Scholar

    [26] P. R. Li, Generalized convolution–type singular integral equations, Appl. Math. Comput., 2017, 311, 314–323. doi: 10.1016/j.cam.2016.07.027

    CrossRef Google Scholar

    [27] P. R. Li, Generalized boundary value problems for analytic functions with convolutions and its applications, Math. Meth. Appl. Sci., 2019, 42(8), 2631–2645. doi: 10.1002/mma.5538

    CrossRef Google Scholar

    [28] P. R. Li, On solvability of singular integral-differential equations with convolution, J. Appl. Anal. Comput, 2019, 9(3), 1071–1082.

    Google Scholar

    [29] P. R. Li, Singular integral equations of convolution type with cauchy kernel in the class of exponentially increasing functions, Appl. Math. Comput., 2019, 344, 116–127.

    Google Scholar

    [30] P. R. Li, Non-normal type singular integral-differential equations by Riemann-Hilbert approach, J. Math. Anal. Appl., 2020, 483(2), 123643. doi: 10.1016/j.jmaa.2019.123643

    CrossRef Google Scholar

    [31] P. R. Li, The solvability and explicit solutions of singular integral–differential equations of non-normal type via Riemann–Hilbert problem, J. Comput. Appl. Math., 2020, 374, 112759. doi: 10.1016/j.cam.2020.112759

    CrossRef Google Scholar

    [32] P. R. Li, Solvability theory of convolution singular integral equations via Riemann–Hilbert approach, J. Comput. Appl. Math., 2020, 370, 112601. doi: 10.1016/j.cam.2019.112601

    CrossRef Google Scholar

    [33] P. R. Li, Existence of analytic solutions for some classes of singular integral equations of non-normal type with convolution kernel, Acta Appl. Math., 2022, 181(1), 5. doi: 10.1007/s10440-022-00522-w

    CrossRef Google Scholar

    [34] P. R. Li, Holomorphic solutions and solvability theory for a class of linear complete singular integro-differential equations with convolution by riemann–hilbert method, Anal. Math. Phys., 2022, 12(6), 146. doi: 10.1007/s13324-022-00759-6

    CrossRef Google Scholar

    [35] P. R. Li and L. X. Cao, Linear bvps and sies for generalized regular functions in clifford analysis, J. Funct. Spaces., 2018, 2018(1), 6967149.

    Google Scholar

    [36] P. R. Li and G. B. Ren, Some classes of equations of discrete type with harmonic singular operator and convolution, Applied Mathematics and Computation, 2016, 284, 185–194. doi: 10.1016/j.amc.2016.03.004

    CrossRef Google Scholar

    [37] P. R. Li and G. B. Ren, Solvability of singular integro-differential equations via Riemann–Hilbert problem, J. Diff. Eqs., 2018, 265(11), 5455–5471. doi: 10.1016/j.jde.2018.07.056

    CrossRef Google Scholar

    [38] P. R. Li, Y. Xia, W. W. Zhang, et al., Uniqueness and existence of solutions to some kinds of singular convolution integral equations with cauchy kernel via R–H problems, Acta Appl. Math., 2023, 184(1), 2. doi: 10.1007/s10440-023-00556-8

    CrossRef Google Scholar

    [39] P. R. Li, N. Zhang, M. C. Wang and Y. J. Zhou, An efficient method for singular integral equations of non-normal type with two convolution kernels, Complex Var. Elliptic Equ., 2023, 68(4), 632–648. doi: 10.1080/17476933.2021.2009817

    CrossRef Google Scholar

    [40] G. S. Litvinchuk, Solvability Theory of Boundary Value Problems and Singular Integral Equations with Shift, Kluwer Academic Publishers, London, 2004.

    Google Scholar

    [41] J. K. Lu, Boundary Value Problems for Analytic Functions, World Sci., Singapore, 2004.

    Google Scholar

    [42] W. X. Ma, Nonlocal PT–symmetric integrable equations and related Riemann–Hilbert problems, Partial Differential Equations in Applied Mathematics, 2021, 4, 100190. doi: 10.1016/j.padiff.2021.100190

    CrossRef Google Scholar

    [43] W. X. Ma, Nonlocal integrable mKdV equations by two nonlocal reductions and their soliton solutions, J. Geom. Phys., 2022, 177, 104522. doi: 10.1016/j.geomphys.2022.104522

    CrossRef Google Scholar

    [44] N. I. Muskhelishvilli, Singular Integral Equations, Nauka, Moscow, 2002.

    Google Scholar

    [45] T. Nakazi and T. Yamamoto, Normal singular integral operators with Cauchy kernel on L2, Integr. Equat. Oper. Th., 2014, 78, 233–248. doi: 10.1007/s00020-013-2104-y

    CrossRef $L^2 $" target="_blank">Google Scholar

    [46] G. B. Ren, U. Kaehler, J. H. Shi and C. W. Liu, Hardy–littlewood inequalities for fractional derivatives of invariant harmonic functions, Complex Anal. Oper. Theory., 2012, 6(2), 373–396. doi: 10.1007/s11785-010-0123-0

    CrossRef Google Scholar

    [47] M. Sun, P. R. Li and S. W. Bai, A new efficient method for two classes of convolution singular integral equations of non-normal type with cauchy kernels, J. Appl. Anal. Comput., 2022, 12(4), 1250–1273.

    Google Scholar

    [48] N. M. Tuan and N. T. T. Huyen, The solvability and explicit solutions of two integral equations via generalized convolutions, J. Math. Anal. Appl., 2010, 369(2), 712–718. doi: 10.1016/j.jmaa.2010.04.019

    CrossRef Google Scholar

    [49] T. Tuan and V. K. Tuan, Young inequalities for a Fourier cosine and sine polyconvolution and a generalized convolution, Integr. Transf. Spec. F., 2023, 34(9), 690–702. doi: 10.1080/10652469.2023.2182776

    CrossRef Google Scholar

    [50] T. Wang, S. Liu and Z. Zhang, Singular expansions and collocation methods for generalized abel integral equations, J. Comput. Appl. Math., 2023, 429, 115240. doi: 10.1016/j.cam.2023.115240

    CrossRef Google Scholar

    [51] P. Wójcik, M. Sheshko and S. Sheshko, Application of faber polynomials to the approximate solution of singular integral equations with the Cauchy kernel, Diff. Equat., 2013, 49, 198–209. doi: 10.1134/S0012266113020067

    CrossRef Google Scholar

    [52] I. Zamanpour and R. Ezzati, Operational matrix method for solving fractional weakly singular 2D partial Volterra integral equations, J. Comput. Appl. Math., 2023, 419, 114704. doi: 10.1016/j.cam.2022.114704

    CrossRef Google Scholar

    [53] W. W. Zhang, Y. X. Lei and P. R. Li, The solvability of some kinds of singular integral equations of convolution type with variable integral limits, J. Appl. Anal. Comput., 2024, 14(4), 2207–2227.

    Google Scholar

Article Metrics

Article views(122) PDF downloads(108) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint