2025 Volume 15 Issue 4
Article Contents

Haibo Luo, Weihua Sun. CONTROL OF JULIA SETS OF COURNOT-BERTRAND DUOPOLY GAME MODEL[J]. Journal of Applied Analysis & Computation, 2025, 15(4): 2427-2439. doi: 10.11948/20240489
Citation: Haibo Luo, Weihua Sun. CONTROL OF JULIA SETS OF COURNOT-BERTRAND DUOPOLY GAME MODEL[J]. Journal of Applied Analysis & Computation, 2025, 15(4): 2427-2439. doi: 10.11948/20240489

CONTROL OF JULIA SETS OF COURNOT-BERTRAND DUOPOLY GAME MODEL

  • Author Bio: Email: hbbq69@163.com(H. Luo)
  • Corresponding author: Email: whsun@sdu.edu.cn(W. Sun)
  • Fund Project: The authors were supported by Natural Science Foundation of Shandong Province (No. ZR2022MA032) and National Natural Science Foundation of China-Shandong joint fund (No. U1806203)
  • Cournot-Bertrand duopoly game model is a very important model in the economic field. Based on the idea of feedback control, three controllers are designed to control Julia sets of Cournot-Bertrand duopoly game model in this study. The first method is the feedback control by use of the fixed point, the second is based on feedback control and cumulative error and the third is designed based on the feedback control and difference. The efficacy of three control methods is illustrated in simulations.

    MSC: 34F10, 70K20
  • 加载中
  • [1] G. Abdul Baki and W. Marrouch, Environmental taxation in the Bertrand differentiated duopoly: New insights, Resource and Energy Economics, 2022, 70, 101329. doi: 10.1016/j.reseneeco.2022.101329

    CrossRef Google Scholar

    [2] E. Ahmed, A. A. Elsadany and T. Puu, On Bertrand duopoly game with differentiated goods, Applied Mathematics and Computation, 2015, 251, 169–179. doi: 10.1016/j.amc.2014.11.051

    CrossRef Google Scholar

    [3] J. Andaluz, A. A. Elsadany and G. Jarne, Dynamic behavior in a Cournot duopoly with social responsibility, Chaos, Solitons & Fractals, 2023, 172, 113511.

    Google Scholar

    [4] A. Arya, B. Mittendorf and D. E. M. Sappington, Outsourcing, vertical integration, and price vs. Quantity competition, International Journal of Industrial Organization, 2008, 26(1), 1–16. doi: 10.1016/j.ijindorg.2006.10.006

    CrossRef Google Scholar

    [5] C. Beck, Physical meaning for Mandelbrot and Julia sets, Physica D: Nonlinear Phenomena, 1999, 125(3–4), 171–182. doi: 10.1016/S0167-2789(98)00243-7

    CrossRef Google Scholar

    [6] E. Cumbul, Stackelberg versus Cournot oligopoly with private information, International Journal of Industrial Organization, 2021, 74, 102674. doi: 10.1016/j.ijindorg.2020.102674

    CrossRef Google Scholar

    [7] E. Dalla, Asymmetries in banking conduct: A Cournot-Bertrand model, Economics Letters, 2023, 233, 111426. doi: 10.1016/j.econlet.2023.111426

    CrossRef Google Scholar

    [8] B. Du, C. Wu, G. Zhang and X.-L. Zhou, Dynamical behaviors of a discrete two-dimensional competitive system exactly driven by the large centre, Journal of Applied Analysis & Computation, 2024, 14(5), 2822–2844.

    Google Scholar

    [9] K. Falconer, Fractal Geometry: Mathematical Foundation and Application, Wiley Press, West Chester, UK, 2013.

    Google Scholar

    [10] N. Garcia-Vicente, D. D. Garcia-Swartz and M. Campbell-Kelly, What do we know about duopolies? Insights from the history of cellular phones, Telecommunications Policy, 2022, 46(2), 102259. doi: 10.1016/j.telpol.2021.102259

    CrossRef Google Scholar

    [11] Ö. AK Gümüş, A study on stability, bifurcation analysis and chaos control of a discrete-time prey-predator system involving Allee effect, Journal of Applied Analysis & Computation, 2023, 13(6), 3166–3194.

    Google Scholar

    [12] G. Julia, Mémoire sur l'itération des fonctions rationnelles, Journal de Mathématiques Pures et Appliquées, 1918, 1, 47–246.

    Google Scholar

    [13] X. Li and Y. Jiang, Influence of rationality levels on dynamics of heterogeneous Cournot duopolists with quadratic costs, Heliyon, 2023, 9(12), e22827. doi: 10.1016/j.heliyon.2023.e22827

    CrossRef Google Scholar

    [14] N. Selem Mojica, J. Navarro, P. C. Marijuán and R. Lahoz-Beltra, Cellular "bauplans": Evolving unicellular forms by means of Julia sets and Pickover biomorphs, Biosystems, 2009, 98(1), 19–30. doi: 10.1016/j.biosystems.2009.07.002

    CrossRef Google Scholar

    [15] A. Mukherjee, L. F. S. Wang and J. Sun, Bertrand-Cournot profit reversal in a vertical structure with cross ownership, Economics Letters, 2024, 238, 111681. doi: 10.1016/j.econlet.2024.111681

    CrossRef Google Scholar

    [16] A. Quadir, Demand information sharing in Cournot-Bertrand model, Operations Research Letters, 2024, 53, 107069. doi: 10.1016/j.orl.2024.107069

    CrossRef Google Scholar

    [17] G. Sarafopoulos and K. Papadopoulos, Complexity of a Bertrand duopoly game with homogeneous expectations, quadratic cost functions and chaos control, IFAC-PapersOnLine, 2021, 54(17), 41–46. doi: 10.1016/j.ifacol.2021.11.024

    CrossRef Google Scholar

    [18] A. Semenov and J.-B. Tondji, On the dynamic analysis of Cournot–Bertrand equilibria, Economics Letters, 2019, 183, 108549. doi: 10.1016/j.econlet.2019.108549

    CrossRef Google Scholar

    [19] J. Shu and Y. Zhang, Fractal control and synchronization of population competition model based on the T–S fuzzy model, Chaos, Solitons & Fractals, 2023, 172, 113583.

    Google Scholar

    [20] C. Sun and F.-C. Lai, Spatial price discrimination in a symmetric barbell model: Bertrand vs. Cournot, Papers in Regional Science, 2014, 93(1), 141–159. doi: 10.1111/j.1435-5957.2012.00476.x

    CrossRef Google Scholar

    [21] J. Sun, W. Qiao and S. Liu, New identification and control methods of sine-function Julia sets, Journal of Applied Analysis & Computation, 2015, 5(2), 220–231.

    Google Scholar

    [22] W. Sun and Y. Zhang, Control and synchronization of Julia sets in the forced brusselator model, International Journal of Bifurcation and Chaos, 2015, 25(09), 1550113. doi: 10.1142/S0218127415501138

    CrossRef Google Scholar

    [23] Y. Sun, R. Xu, L. Chen, et al., Image compression and encryption scheme using farcatal dictionary and Julia set, IET Image Processing, 2015, 9(3), 173–183. doi: 10.1049/iet-ipr.2014.0224

    CrossRef Google Scholar

    [24] C. H. Tremblay and V. J. Tremblay, The Cournot–Bertrand model and the degree of product differentiation, Economics Letters, 2011, 111(3), 233–235. doi: 10.1016/j.econlet.2011.02.011

    CrossRef Google Scholar

    [25] V. J. Tremblay, C. H. Tremblay and K. Isariyawongse, Cournot and Bertrand competition when advertising rotates demand: The case of Honda and Scion, International Journal of the Economics of Business, 2013, 20(1), 125–141. doi: 10.1080/13571516.2012.750045

    CrossRef Google Scholar

    [26] C. Wang, J. Pi, D. Zhou, W. Tang and G. Yang, Dynamics of n-person Cournot games with asymmetric information and heterogeneous expectations, Physica A: Statistical Mechanics and Its Applications, 2023, 618, 128691. doi: 10.1016/j.physa.2023.128691

    CrossRef Google Scholar

    [27] D. Wang, S. Liu, K. Liu and Y. Zhao, Control and synchronization of Julia sets generated by a class of complex time-delay rational map, Journal of Applied Analysis & Computation, 2016, 6(4), 1049–1063.

    Google Scholar

    [28] H. Wang and J. Ma, Complexity analysis of a Cournot-Bertrand duopoly game model with limited information, Discrete Dynamics in Nature and Society, 2013, 2013, 1–6.

    Google Scholar

    [29] Y. Wang, S. Liu and W. Wang, Fractal dimension analysis and control of Julia set generated by fractional Lotka–Volterra models, Communications in Nonlinear Science and Numerical Simulation, 2019, 72, 417–431. doi: 10.1016/j.cnsns.2019.01.009

    CrossRef Google Scholar

    [30] X. Xiang and B. Cao, Multidimensional game of Cournot-Bertrand model with incomplete information and its analysis, Procedia Engineering, 2012, 29, 895–902. doi: 10.1016/j.proeng.2012.01.061

    CrossRef Google Scholar

    [31] P. Zanchettin, Differentiated duopoly with asymmetric costs, Journal of Economics & Management Strategy, 2006, 15(4), 999–1015.

    Google Scholar

    [32] Y. Zhang and S. Liu, Gradient control and synchronization of Julia sets, Chinese Physics B, 2008, 17(2), 543–549. doi: 10.1088/1674-1056/17/2/032

    CrossRef Google Scholar

    [33] Y. Zhu, W. Zhou, T. Chu and A. A. Elsadany, Complex dynamical behavior and numerical simulation of a Cournot-Bertrand duopoly game with heterogeneous players, Communications in Nonlinear Science and Numerical Simulation, 2021, 101, 105898. doi: 10.1016/j.cnsns.2021.105898

    CrossRef Google Scholar

Figures(7)

Article Metrics

Article views(145) PDF downloads(83) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint