2025 Volume 15 Issue 4
Article Contents

Guo-Feng Feng, Qing-Hai Cao, Bin Ge. QUASILINEAR DOUBLE PHASE PROBLEMS ON THE ENTIRE SPACE $\mathbb{R}^N$[J]. Journal of Applied Analysis & Computation, 2025, 15(4): 2440-2460. doi: 10.11948/20240512
Citation: Guo-Feng Feng, Qing-Hai Cao, Bin Ge. QUASILINEAR DOUBLE PHASE PROBLEMS ON THE ENTIRE SPACE $\mathbb{R}^N$[J]. Journal of Applied Analysis & Computation, 2025, 15(4): 2440-2460. doi: 10.11948/20240512

QUASILINEAR DOUBLE PHASE PROBLEMS ON THE ENTIRE SPACE $\mathbb{R}^N$

  • This study is concerned with the following double phase problem

    $ \begin{array}{ll} \quad-{\rm div}(|\nabla u|^{^{p-2}}\nabla u+\mu(x)|\nabla u|^{^{q-2}}\nabla u) +V(x)(|u|^{^{p-2}}u+\mu(x)|u|^{^{q-2}}u) \\ = \lambda f(x, u), \; x\in \mathbb{R}^N, \end{array} $

    where $1<p<q<N$, $\frac{q}{p}\leq 1+\frac{\alpha}{N}$, $\lambda$ is a real parameter, $0\leq\mu\in C{^{0,\alpha}}(\mathbb{R}^N)$ with $\alpha\in(0,1]$, $V(x)$ is an unbounded potential function and $f(x,u)$ is the reaction term. The aim is to determine the precise positive interval of $\lambda$ for which the problem admits at least one or two nontrivial solutions by applying abstract critical point results.

    MSC: 35D30, 35J20, 35J60, 35J70, 35J92
  • 加载中
  • [1] S. Baasandorj, S. Byun and J. Oh, Calderón-Zygmund estimates for generalized double phase problems, J. Funct. Anal., 2020, 279(7), 108670. doi: 10.1016/j.jfa.2020.108670

    CrossRef Google Scholar

    [2] J. H. Bae and Y. H. Kim, Critical points theorems via the generalized Ekeland variational principle and its application to equations of $ p(x) $ Laplace type in $\mathbb{R}^N$, Taiwanese J. Math., 2019, 23(1), 193–229.

    $ p(x) $-Laplace type in $\mathbb{R}^N$" target="_blank">Google Scholar

    [3] A. Bahrouni, V. D. Rădulescu and D. D. Repov$\breve{\mathrm{s}}$, Double phase transonic flow problems with variable growth: Nonlinear patterns and stationary waves, Nonlinearity, 2019, 32(7), 2481–2495.

    Google Scholar

    [4] P. Baroni, M. Colombo and G. Mingione, Regularity for general functionals with double phase, Calc. Var. Partial Differ. Equ., 2018, 57(2), 62. doi: 10.1007/s00526-018-1332-z

    CrossRef Google Scholar

    [5] V. Benci, P. D'Avenia, D. Fortunato and L. Pisani, Solitons in several space dimensions: Derrick's problem and infinitely many solutions, Arch. Ration. Mech. Anal., 2000, 154(4), 297–324. doi: 10.1007/s002050000101

    CrossRef Google Scholar

    [6] S. Biagi, F. Esposito and E. Vecchi, Symmetry and monotonicity of singular solutions of double phase problems, J. Diff. Eqs., 2021, 280, 435–463. doi: 10.1016/j.jde.2021.01.029

    CrossRef Google Scholar

    [7] S. Byun, S. Liang and J. Ok, Irregular double obstacle problems with Orlicz growth, J. Geom. Anal., 2020, 30(2), 1965–1984. doi: 10.1007/s12220-020-00352-y

    CrossRef Google Scholar

    [8] S. Byun and J. Oh, Regularity results for generalized double phase functionals, Anal. PDE., 2020, 13(5), 1269–1300. doi: 10.2140/apde.2020.13.1269

    CrossRef Google Scholar

    [9] L. Cherfils and Y. ll'yasov, On the stationary solutions of generalized reaction diffusion equations with p&q-Laplacian, Commun. Pure Appl. Anal., 2005, 4(1), 9–22. doi: 10.3934/cpaa.2005.4.9

    CrossRef Google Scholar

    [10] M. Colombo and G. Mingione, Regularity for double phase variational problems, Arch. Ration. Mech. Anal., 2015, 215(2), 443–496. doi: 10.1007/s00205-014-0785-2

    CrossRef Google Scholar

    [11] M. Colombo and G. Mingione, Bounded minimisers of double phase variational integrals, Arch. Ration. Mech. Anal., 2015, 218(1), 219–273. doi: 10.1007/s00205-015-0859-9

    CrossRef Google Scholar

    [12] C. De Filippis and J. Oh, Regularity for multi-phase variational problems, J. Diff. Eqs., 2019, 267(3), 1631–1670. doi: 10.1016/j.jde.2019.02.015

    CrossRef Google Scholar

    [13] L. Gasinski and N. S. Papageorgiou, Constant sign and nodal solutions for superlinear double phase problems, Adv. Calc. Var., 2021, 14(4), 613–626. doi: 10.1515/acv-2019-0040

    CrossRef Google Scholar

    [14] L. Gasinski and P. Winkert, Existence and uniqueness results for double phase problems with convection term, J. Diff. Eqs., 2020, 268(8), 4183–4193. doi: 10.1016/j.jde.2019.10.022

    CrossRef Google Scholar

    [15] B. Ge and Z. Y. Chen, Existence of infinitely many solutions for double phase problem with sign-changing potential, Rev. R. Acad. Cienc. Exactas Fis. Nat., Ser. A Mat., 2019, 113(4), 3185–3196. doi: 10.1007/s13398-019-00684-7

    CrossRef Google Scholar

    [16] B. Ge and P. Pucci, Quasilinear double phase problems in the whole space via perturbation methods, Adv. Diff. Eqs., 2022, 27(1–2), 1–30.

    Google Scholar

    [17] G. L. Hou, B. Ge, B. L. Zhang and L. Y. Wang, Ground state sign-changing solutions for a class of double-phase problem in bounded domains, Bound. Value Probl., 2020, 24, 1–21.

    Google Scholar

    [18] Y. F. Li and H. C. Liu, A multiplicity result for double phase problem in the whole space, AIMS Math., 2022, 7(9), 17475–17485. doi: 10.3934/math.2022963

    CrossRef Google Scholar

    [19] W. L. Liu and G. W. Dai, Existence and multiplicity results for double phase problem, J. Diff. Eqs., 2018, 265(9), 4311–4334. doi: 10.1016/j.jde.2018.06.006

    CrossRef Google Scholar

    [20] W. L. Liu and G. W. Dai, Multiplicity results for double phase problems in $\mathbb{R}^N$, J. Math. Phys., 2020, 61(9), 091508. doi: 10.1063/5.0020702

    CrossRef $\mathbb{R}^N$" target="_blank">Google Scholar

    [21] W. L. Liu and G. W. Dai, Three ground state solutions for double phase problem, J. Math. Phys., 2018, 59(12), 121503. doi: 10.1063/1.5055300

    CrossRef Google Scholar

    [22] G. Marino and P. Winkert, Existence and uniqueness of elliptic systems with double phase operators and convection terms, J. Math. Anal. Appl., 2020, 492(1), 124423. doi: 10.1016/j.jmaa.2020.124423

    CrossRef Google Scholar

    [23] K. Perera and M. Squassina, Existence results for double-phase problems via Morse theory, Commun. Contemp. Math., 2018, 20(2), 1750023. doi: 10.1142/S0219199717500237

    CrossRef Google Scholar

    [24] J. H. Shen, L. Y. Wang, K. Chi and B. Ge, Existence and multiplicity of solutions for a quasilinear double phase problem on the whole space, Compl. Vari. Elliptic Equas., 2023, 68(2), 306–316. doi: 10.1080/17476933.2021.1988585

    CrossRef Google Scholar

    [25] R. Stegliński, Infinitely many solutions for double phase problem with unbounded potential in $\mathbb{R}^N$, Nonlinear Anal., 2022, 214, 112580. doi: 10.1016/j.na.2021.112580

    CrossRef $\mathbb{R}^N$" target="_blank">Google Scholar

    [26] B. S. Wang, G. L. Hou and B. Ge, Existence of solutions for double-phase problems by topological degree, J. Fixed Point Theory Appl., 2021, 23(1), 1–11. doi: 10.1007/s11784-020-00835-z

    CrossRef Google Scholar

    [27] S. Zeng, Y. Bai, L. Gasinski and P. Winkert, Existence results for double phase implicit obstacle problems involving multivalued operators, Calc. Var. Partial Differential Equations, 2020, 59(5), 1–18.

    Google Scholar

    [28] S. Zeng, Y. Bai, L. Gasinski and P. Winkert, Convergence analysis for double phase obstacle problems with multivalued convection term, Adv. Nonlinear Anal., 2021, 10(1), 659–672.

    Google Scholar

    [29] S. Zeng, L. Gasinski, P. Winkert and Y. Bai, Existence of solutions for double phase obstacle problems with multivalued convection term, J. Math. Anal. Appl., 2021, 501(1), 123997. doi: 10.1016/j.jmaa.2020.123997

    CrossRef Google Scholar

    [30] V. V. Zhikov, On variational problems and nonlinear elliptic equations with nonstandard growth conditions, J. Math. Sci., 2011, 173(5), 463–570.

    Google Scholar

    [31] C. K. Zhong, A generalization of Ekelands variational principle and application to the study of the relation between the weak P.S. condition and coercivity, Nonlinear Anal., 1997, 29(12), 1421–1431.

    Google Scholar

Article Metrics

Article views(124) PDF downloads(90) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint