Citation: | Guo-Feng Feng, Qing-Hai Cao, Bin Ge. QUASILINEAR DOUBLE PHASE PROBLEMS ON THE ENTIRE SPACE $\mathbb{R}^N$[J]. Journal of Applied Analysis & Computation, 2025, 15(4): 2440-2460. doi: 10.11948/20240512 |
This study is concerned with the following double phase problem
$ \begin{array}{ll} \quad-{\rm div}(|\nabla u|^{^{p-2}}\nabla u+\mu(x)|\nabla u|^{^{q-2}}\nabla u) +V(x)(|u|^{^{p-2}}u+\mu(x)|u|^{^{q-2}}u) \\ = \lambda f(x, u), \; x\in \mathbb{R}^N, \end{array} $
where $1<p<q<N$, $\frac{q}{p}\leq 1+\frac{\alpha}{N}$, $\lambda$ is a real parameter, $0\leq\mu\in C{^{0,\alpha}}(\mathbb{R}^N)$ with $\alpha\in(0,1]$, $V(x)$ is an unbounded potential function and $f(x,u)$ is the reaction term. The aim is to determine the precise positive interval of $\lambda$ for which the problem admits at least one or two nontrivial solutions by applying abstract critical point results.
[1] | S. Baasandorj, S. Byun and J. Oh, Calderón-Zygmund estimates for generalized double phase problems, J. Funct. Anal., 2020, 279(7), 108670. doi: 10.1016/j.jfa.2020.108670 |
[2] |
J. H. Bae and Y. H. Kim, Critical points theorems via the generalized Ekeland variational principle and its application to equations of $ p(x) $ Laplace type in $\mathbb{R}^N$, Taiwanese J. Math., 2019, 23(1), 193–229.
$ p(x) $-Laplace type in |
[3] | A. Bahrouni, V. D. Rădulescu and D. D. Repov$\breve{\mathrm{s}}$, Double phase transonic flow problems with variable growth: Nonlinear patterns and stationary waves, Nonlinearity, 2019, 32(7), 2481–2495. |
[4] | P. Baroni, M. Colombo and G. Mingione, Regularity for general functionals with double phase, Calc. Var. Partial Differ. Equ., 2018, 57(2), 62. doi: 10.1007/s00526-018-1332-z |
[5] | V. Benci, P. D'Avenia, D. Fortunato and L. Pisani, Solitons in several space dimensions: Derrick's problem and infinitely many solutions, Arch. Ration. Mech. Anal., 2000, 154(4), 297–324. doi: 10.1007/s002050000101 |
[6] | S. Biagi, F. Esposito and E. Vecchi, Symmetry and monotonicity of singular solutions of double phase problems, J. Diff. Eqs., 2021, 280, 435–463. doi: 10.1016/j.jde.2021.01.029 |
[7] | S. Byun, S. Liang and J. Ok, Irregular double obstacle problems with Orlicz growth, J. Geom. Anal., 2020, 30(2), 1965–1984. doi: 10.1007/s12220-020-00352-y |
[8] | S. Byun and J. Oh, Regularity results for generalized double phase functionals, Anal. PDE., 2020, 13(5), 1269–1300. doi: 10.2140/apde.2020.13.1269 |
[9] | L. Cherfils and Y. ll'yasov, On the stationary solutions of generalized reaction diffusion equations with p&q-Laplacian, Commun. Pure Appl. Anal., 2005, 4(1), 9–22. doi: 10.3934/cpaa.2005.4.9 |
[10] | M. Colombo and G. Mingione, Regularity for double phase variational problems, Arch. Ration. Mech. Anal., 2015, 215(2), 443–496. doi: 10.1007/s00205-014-0785-2 |
[11] | M. Colombo and G. Mingione, Bounded minimisers of double phase variational integrals, Arch. Ration. Mech. Anal., 2015, 218(1), 219–273. doi: 10.1007/s00205-015-0859-9 |
[12] | C. De Filippis and J. Oh, Regularity for multi-phase variational problems, J. Diff. Eqs., 2019, 267(3), 1631–1670. doi: 10.1016/j.jde.2019.02.015 |
[13] | L. Gasinski and N. S. Papageorgiou, Constant sign and nodal solutions for superlinear double phase problems, Adv. Calc. Var., 2021, 14(4), 613–626. doi: 10.1515/acv-2019-0040 |
[14] | L. Gasinski and P. Winkert, Existence and uniqueness results for double phase problems with convection term, J. Diff. Eqs., 2020, 268(8), 4183–4193. doi: 10.1016/j.jde.2019.10.022 |
[15] | B. Ge and Z. Y. Chen, Existence of infinitely many solutions for double phase problem with sign-changing potential, Rev. R. Acad. Cienc. Exactas Fis. Nat., Ser. A Mat., 2019, 113(4), 3185–3196. doi: 10.1007/s13398-019-00684-7 |
[16] | B. Ge and P. Pucci, Quasilinear double phase problems in the whole space via perturbation methods, Adv. Diff. Eqs., 2022, 27(1–2), 1–30. |
[17] | G. L. Hou, B. Ge, B. L. Zhang and L. Y. Wang, Ground state sign-changing solutions for a class of double-phase problem in bounded domains, Bound. Value Probl., 2020, 24, 1–21. |
[18] | Y. F. Li and H. C. Liu, A multiplicity result for double phase problem in the whole space, AIMS Math., 2022, 7(9), 17475–17485. doi: 10.3934/math.2022963 |
[19] | W. L. Liu and G. W. Dai, Existence and multiplicity results for double phase problem, J. Diff. Eqs., 2018, 265(9), 4311–4334. doi: 10.1016/j.jde.2018.06.006 |
[20] | W. L. Liu and G. W. Dai, Multiplicity results for double phase problems in $\mathbb{R}^N$, J. Math. Phys., 2020, 61(9), 091508. doi: 10.1063/5.0020702 |
[21] | W. L. Liu and G. W. Dai, Three ground state solutions for double phase problem, J. Math. Phys., 2018, 59(12), 121503. doi: 10.1063/1.5055300 |
[22] | G. Marino and P. Winkert, Existence and uniqueness of elliptic systems with double phase operators and convection terms, J. Math. Anal. Appl., 2020, 492(1), 124423. doi: 10.1016/j.jmaa.2020.124423 |
[23] | K. Perera and M. Squassina, Existence results for double-phase problems via Morse theory, Commun. Contemp. Math., 2018, 20(2), 1750023. doi: 10.1142/S0219199717500237 |
[24] | J. H. Shen, L. Y. Wang, K. Chi and B. Ge, Existence and multiplicity of solutions for a quasilinear double phase problem on the whole space, Compl. Vari. Elliptic Equas., 2023, 68(2), 306–316. doi: 10.1080/17476933.2021.1988585 |
[25] | R. Stegliński, Infinitely many solutions for double phase problem with unbounded potential in $\mathbb{R}^N$, Nonlinear Anal., 2022, 214, 112580. doi: 10.1016/j.na.2021.112580 |
[26] | B. S. Wang, G. L. Hou and B. Ge, Existence of solutions for double-phase problems by topological degree, J. Fixed Point Theory Appl., 2021, 23(1), 1–11. doi: 10.1007/s11784-020-00835-z |
[27] | S. Zeng, Y. Bai, L. Gasinski and P. Winkert, Existence results for double phase implicit obstacle problems involving multivalued operators, Calc. Var. Partial Differential Equations, 2020, 59(5), 1–18. |
[28] | S. Zeng, Y. Bai, L. Gasinski and P. Winkert, Convergence analysis for double phase obstacle problems with multivalued convection term, Adv. Nonlinear Anal., 2021, 10(1), 659–672. |
[29] | S. Zeng, L. Gasinski, P. Winkert and Y. Bai, Existence of solutions for double phase obstacle problems with multivalued convection term, J. Math. Anal. Appl., 2021, 501(1), 123997. doi: 10.1016/j.jmaa.2020.123997 |
[30] | V. V. Zhikov, On variational problems and nonlinear elliptic equations with nonstandard growth conditions, J. Math. Sci., 2011, 173(5), 463–570. |
[31] | C. K. Zhong, A generalization of Ekelands variational principle and application to the study of the relation between the weak P.S. condition and coercivity, Nonlinear Anal., 1997, 29(12), 1421–1431. |