2025 Volume 15 Issue 6
Article Contents

Ayoub Louakar, Devaraj Vivek, Ahmed Kajouni, Khalid Hilal. EXISTENCE RESULTS OF HILFER FRACTIONAL STOCHASTIC PANTOGRAPH DIFFERENTIAL EQUATIONS WITH NON-INSTANTANEOUS IMPULSES VIA CONDENSING OPERATOR THEORY[J]. Journal of Applied Analysis & Computation, 2025, 15(6): 3629-3648. doi: 10.11948/20250001
Citation: Ayoub Louakar, Devaraj Vivek, Ahmed Kajouni, Khalid Hilal. EXISTENCE RESULTS OF HILFER FRACTIONAL STOCHASTIC PANTOGRAPH DIFFERENTIAL EQUATIONS WITH NON-INSTANTANEOUS IMPULSES VIA CONDENSING OPERATOR THEORY[J]. Journal of Applied Analysis & Computation, 2025, 15(6): 3629-3648. doi: 10.11948/20250001

EXISTENCE RESULTS OF HILFER FRACTIONAL STOCHASTIC PANTOGRAPH DIFFERENTIAL EQUATIONS WITH NON-INSTANTANEOUS IMPULSES VIA CONDENSING OPERATOR THEORY

  • In this study, we establish the existence of mild solutions for fractional stochastic pantograph differential equations incorporating the Hilfer fractional derivative and non-instantaneous impulses. The analysis is conducted using tools from fractional calculus, semigroup theory, and stochastic analysis under appropriate conditions. Additionally, we employ condensing operator theory, the Hausdorff measure of noncompactness, and Sadovskii's fixed point theorem to derive our existence results. A detailed example, supported by graphical analysis, is presented to illustrate the practical applicability of the theoretical findings.

    MSC: 26A33, 47H08, 34K50, 34A37
  • 加载中
  • [1] T. Abdeljawad, K. Shah, M. S. Abdo and F. Jarad, An analytical study of fractional delay impulsive implicit systems with Mittag-Leffler law, Appl. Comput. Math., 2023, 22, 34–44.

    Google Scholar

    [2] A. S. Ahmed, Existence and uniqueness of mild solutions to neutral impulsive fractional stochastic delay differential equations driven by both Brownian motion and fractional Brownian motion, Differ. Equat. Appl., 2022, 14, 433–446.

    Google Scholar

    [3] H. M. Ahmed and J. R. Wang, Exact null controllability of Sobolev-Type Hilfer fractional stochastic differential equations with fractional Brownian motion and Poisson jumps, B. Iran. Math. Soc., 2018, 44, 673–690. doi: 10.1007/s41980-018-0043-8

    CrossRef Google Scholar

    [4] K. Balachandran, S. Kiruthika and J. J. Trujillo, Existence of solutions of nonlinear fractional pantograph equations, Acta Math. Sin., 2013, 33, 712–720. doi: 10.1016/S0252-9602(13)60032-6

    CrossRef Google Scholar

    [5] J. Banaś, Measures of noncompactness in the study of solutions of nonlinear differential and integral equations, Open Math., 2012, 10, 2003–2011. doi: 10.2478/s11533-012-0120-9

    CrossRef Google Scholar

    [6] T. Caraballo and M. A. Diop, Neutral stochastic delay partial functional integrodifferential equations driven by a fractional Brownian motion, Front. Math. China, 2013, 8, 745–760. doi: 10.1007/s11464-013-0300-3

    CrossRef Google Scholar

    [7] S. J. Daher, On a fixed point principle of Sadovskii, Nonlinear Analysis: Theory, Methods and Applications, 1978, 2, 643–645.

    Google Scholar

    [8] K. Deimling, Nonlinear Functional Analysis, Courier Corporation, 2010.

    Google Scholar

    [9] K. Diethelm and N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl., 2002, 265, 229–248. doi: 10.1006/jmaa.2000.7194

    CrossRef Google Scholar

    [10] P. Duan and Y. Ren, Solvability and stability for neutral stochastic integro-differential equations driven by fractional Brownian motion with impulses, Mediterr. J. Math., 2018, 15, 207. doi: 10.1007/s00009-018-1253-2

    CrossRef Google Scholar

    [11] K. M. Furati and M. D. Kassim, Existence and uniqueness for a problem involving Hilfer fractional derivative, Comput. Math. Appl., 2012, 64, 1616–1626. doi: 10.1016/j.camwa.2012.01.009

    CrossRef Google Scholar

    [12] G. R. Gautam and J. Dabas, Mild solutions for a class of neutral fractional functional differential equations with non-instantaneous impulses, Appl. Math. Comput., 2015, 259, 480–489.

    Google Scholar

    [13] H. Gu and J. J. Trujillo, Existence of mild solution for evolution equation with Hilfer fractional derivative, Appl. Math. Comput., 2015, 257, 344–354.

    Google Scholar

    [14] E. Hernández and D. ÓRegan, On a new class of abstract impulsive differential equations, Proc. Am. Math. Soc., 2013, 141, 1641–1649.

    Google Scholar

    [15] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 1999.

    Google Scholar

    [16] F. Isaia, On a nonlinear integral equation without compactness, Acta Math. Univ. Comen., 2006, 75, 233–240.

    Google Scholar

    [17] M. B. Jeelani, K. Shah, H. Alrabaiah and A. S. Alnahdi, On a SEIR-type model of COVID-19 using piecewise and stochastic differential operators undertaking management strategies, AIMS Mathematics, 2023, 8, 27268–27290. doi: 10.3934/math.20231395

    CrossRef Google Scholar

    [18] J. L. Jensen, Sur les fonctions convexes et les inégalités entre les valeurs moyennes, Acta Mathematica, 1906, 30, 175–193. doi: 10.1007/BF02418571

    CrossRef Google Scholar

    [19] R. Kasinathan, R. Kasinathan and D. Chalishajar, Trajectory controllability of impulsive neutral stochastic functional integrodifferential equations driven by fBm with noncompact semigroup via Mönch fixed point, Qual. Theory Dyn. Syst., 2024, 23, 72. doi: 10.1007/s12346-023-00917-6

    CrossRef Google Scholar

    [20] H. Khalil, A. Zada, S. B. Moussa, I. L. Popa and A. Kallekh, Qualitative analysis of impulsive stochastic Hilfer fractional differential equation, Qual. Theory Dyn. Syst., 2024, 23, 1–21. doi: 10.1007/s12346-023-00858-0

    CrossRef Google Scholar

    [21] R. Kruse, Strong and Weak Approximation of Semilinear Stochastic Evolution Equations, Lecture Notes in Mathematics., Springer, Cham., 2014.

    Google Scholar

    [22] Y. Ma, H. Khalil, A. Zada and L. Popa, Existence theory and stability analysis of neutral $\psi$-Hilfer fractional stochastic differential system with fractional noises and non-instantaneous impulses, AIMS Math., 2024, 9, 8148–8173. doi: 10.3934/math.2024396

    CrossRef Google Scholar

    [23] A. B. Makhlouf and L. Mchiri, Some results on the study of Caputo–Hadamard fractional stochastic differential equations, Chaos Solitons Fractals, 2022, 155, 111757. doi: 10.1016/j.chaos.2021.111757

    CrossRef Google Scholar

    [24] A. B. Makhlouf, L. Mchiri and H. Rguigui, Ulam-Hyers stability of pantograph fractional stochastic differential equations, Math. Methods Appl. Sci., 2023, 46, 4134–4144. doi: 10.1002/mma.8745

    CrossRef Google Scholar

    [25] H. Mönch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal. Theory Methods Appl., 1980, 4, 985–999. doi: 10.1016/0362-546X(80)90010-3

    CrossRef Google Scholar

    [26] N. Mshary, H. M. Ahmed and A. S. Ghanem, Existence and controllability of nonlinear evolution equation involving Hilfer fractional derivative with noise and impulsive effect via Rosenblatt process and Poisson jumps, AIMS Math., 2024, 9, 9746–9769. doi: 10.3934/math.2024477

    CrossRef Google Scholar

    [27] K. S. Nisar, Efficient results on Hilfer pantograph model with nonlocal integral condition, Alex. Eng. J., 2023, 80, 342–347. doi: 10.1016/j.aej.2023.08.061

    CrossRef Google Scholar

    [28] I. Podlubny, Fractional Differential Equations, New York. Academic Press, 1999.

    Google Scholar

    [29] B. Radhakrishnan, T. Sathya and M. A. Alqudah, Existence results for nonlinear Hilfer pantograph fractional integro-differential equations, Qual. Theory Dyn. Syst., 2024, 23, 237. doi: 10.1007/s12346-024-01069-x

    CrossRef Google Scholar

    [30] Y. Ren, X. Cheng and R. Sakthivel, Impulsive neutral stochastic functional integro-differential equations with infinite delay driven by fBm, Appl. Math. Comput., 2014, 247, 205–212.

    Google Scholar

    [31] S. Saravanakumar and P. Balasubramaniam, Non-instantaneous impulsive Hilfer fractional stochastic differential equations driven by fractional Brownian motion, Stoch. Anal. Appl., 2021, 39, 549–566. doi: 10.1080/07362994.2020.1815545

    CrossRef Google Scholar

    [32] K. Shah, T. Abdeljawad, B. Abdalla and M. S. Abualrub, Utilizing fixed point approach to investigate piecewise equations with non-singular type derivative, AIMS Mathematics, 2022, 7, 14614–14630. doi: 10.3934/math.2022804

    CrossRef Google Scholar

    [33] K. Shah, T. Abdeljawad and H. Alrabaiah, On coupled system of drug therapy via piecewise equations, Fractals, 2022, 30, 2240206. doi: 10.1142/S0218348X2240206X

    CrossRef Google Scholar

    [34] K. Shah, H. Naz, T. Abdeljawad and B. Abdalla, Study of fractional order dynamical system of viral infection disease under piecewise derivative, CMES-Computer Modeling in Engineering and Sciences, 2023, 136, 921–941. doi: 10.32604/cmes.2023.025769

    CrossRef Google Scholar

    [35] J. Vanterler da C. Sousa, D. S. Oliveira and E. Capelas de Oliveira, A note on the mild solutions of Hilfer impulsive fractional differential equations, Chaos Solitons Fractals, 2021, 147, 110944. doi: 10.1016/j.chaos.2021.110944

    CrossRef Google Scholar

    [36] H. Tahir, A. Din, K. Shah, B. Abdalla and T. Abdeljawad, Advances in stochastic epidemic modeling: Tackling worm transmission in wireless sensor networks, Math. Comput. Model. Dyn. Syst., 2024, 30, 658–682. doi: 10.1080/13873954.2024.2396480

    CrossRef Google Scholar

    [37] Z. Tomovski, R. Hilfer and H. M. Srivastava, Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions, Integral Transforms Spec. Funct., 2010, 21, 797–814. doi: 10.1080/10652461003675737

    CrossRef Google Scholar

    [38] D. Vivek, E. Elsayed and K. Kangarajan, Existence results for hybrid stochastic differential equations involving $\psi$-Hilfer fractional derivative, Turk. J. Math. Comput. Sci., 2022, 14, 138–144. doi: 10.47000/tjmcs.987414

    CrossRef Google Scholar

    [39] A. Wongcharoen, S. K. Ntouyas and J. Tariboon, Nonlocal boundary value problems for Hilfer-type pantograph fractional differential equations and inclusions, Adv. Differ. Equ., 2020, 8, 1–21.

    Google Scholar

    [40] R. Ye, Existence of solutions for impulsive partial neutral functional differential equation with infinite delay, Nonlinear Anal. Theory Methods Appl., 2010, 73, 155–162. doi: 10.1016/j.na.2010.03.008

    CrossRef Google Scholar

Figures(1)  /  Tables(1)

Article Metrics

Article views(30) PDF downloads(50) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint